• Title/Summary/Keyword: beacon receiver

Search Result 52, Processing Time 0.026 seconds

Analysis of PRC regeneration algorithm performance in dynamic environment by using Multi-DGPS Signal (다중 DGPS 신호를 이용한 동적 환경에서의 PRC 재생성 알고리즘 성능분석)

  • Song Bok-Sub;Oh Kyung-Ryoon;Kim Jeong-Ho
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.335-342
    • /
    • 2006
  • As PRC linear interpolation algorithm is applied after analysed and verified in this paper, the unknown location of a user can be identified by using PRC information of multi-DGPS reference station. The PRC information of each GPS satellite is not varying rapidly, which makes it possible to assume that PRC information of each GPS satellite varies linearly. So, the PRC regeneration algorithm with linear interpolation can be applied to improve the accuracy of finding a user's location by using the various PRC information obtained from multi-DGPS reference station. The desirable PRC is made by the linear combination with the known position of multi-DGPS reference station and PRC values of a satellite using signals from multi-DGPS reference station. The RTK-GPS result was used as the reference. To test the performance of the linearly interpolated PRC regeneration algorithm, multi-channel DGPS beacon receiver was built to get a user's position more exactly by using PRC data of maritime DGPS reference station in RTCM format. At the end of this paper, the result of the quantitative analysis of the developed navigation algorithm performance is presented.

Developmental Plan of Man-Overboard Alert Devices of Small Fishing Vessels: A Study (소형어선의 선외추락 경보장치 개발 방안 연구)

  • Kim, Jae-Won;Kim, Byung-Ok;Lim, Jung-Gyun;Lee, Ju-Han;Yim, Jea-Hong;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.4
    • /
    • pp.245-252
    • /
    • 2018
  • A method of transmitting an alert signal in case of man-overboard (MOB) systems in a small fishing vessel navigating within coastal area is being operated as VHF-DSC equipment via a distress alert button and V-P ass Equipment via alert button or beacon separation. However, a small fishing vessel with a couple of crews on board is an inappropriate way to alert a man-overboard condition. However, internationally, MOB equipment using VHF-DSC, AIS, and Bluetooth technologies is used to transmit alert signals directly to the mother ship and other radio stations. In order to analyze the performance and technology of the MOB equipment operating in foreign countries, it was confirmed that the alarm signal can be received within a maximum of one nautical mile when the MOB device is on the water surface. An MOB device that meets domestic conditions needs to send an alarm signal to a station within the VHF communication range. However, in order to reduce the false alert signal, it is most appropriate to operate the VHF-DSC radio equipment installed on the ship remotely. Analysis of various technologies connecting the MOB and the VHF-DSC revealed that the Bluetooth system has advantages such as device miniaturization. When an emergency signal is transmitted from the MOB device, it can be received by a dedicated receiver and recognized through an external input terminal of the VHF-DSC equipment generating its own alarm. If the emergency situation cannot be processed at the mother ship, a distress alert is sent to all radio stations via VHF-DSC for response under emergencies faced by small fishing vessels.