• Title/Summary/Keyword: beach width

Search Result 29, Processing Time 0.023 seconds

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters ; PART II - Effect of Shape of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 ; PART II - 잠제의 제원에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.429-439
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of run-up height over sandy beach due to the shape of submerged breakwater. For the discussion on it in detail, 3-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly interaction of Wave Structure Sandy beach (hereafter, LES-WASS-3D; Hur and Lee, 2007) has been used to simulate run-up height over sandy beach as well as wave field around submerged breakwaters. Using the results obtained from numerical simulation, the effects of the shape of submerged breakwaters (crown height, crown width, crown length and submerged breakwater's slope gradient) on run-up height over sandy beach have been discussed related to the wave height distribution and characteristics of up-layer flow around ones.

Hydraulic Characteristics Investigation due to the Change of GapWidth between Artificial Reefs (인공리프 개구폭 변화에 따른 흐름특성 고찰)

  • Kim, Kyu-Han;Shim, Kyu-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.408-415
    • /
    • 2016
  • Small fishing ports and coastal structures installed in a relatively low sea water depth disturb the wave induced current and cause the collapse of equilibrium state of sediment transport. These structures creates diffracted waves and matter the concentration of waves to cause the beach erosion. In order to mitigate these eroding problems on the beach, many counter measurements were proposed such as detached breakwater, groin or headland; however, these methods interrupt the aesthetic view of sandy beach due to the exposed structures above the sea level and have difficulty of applying to those beaches with the good scenery. Furthermore, some of these methods create secondary environmental problems after the installations. To eliminate these problems, one of the countermeasures, artificial reefs have been selected and used worldwide to minimize the disturbance of the scenery and secondary effects on the environment. Meanwhile, it is important to set the design elements for installing the artificial reefs such as that of length, opening width, clearing distances from the shoreline and more. Nevertheless, there are no construction manuals or standards for designing the artificial reefs with these important design elements yet. In this study, different conditions of artificial reefs were used with various cases throughout hydraulic model test to precisely analyze the changes of waves and currents to propose the standards of design elements to install the artificial reefs.

Characteristics of Sediment Transport under External Force in Haeundae Beach (해운대 해빈에서 특정 외력하의 표사이동 특성)

  • Kim, Gweon-Su;Ryu, Ha-Sang;Park, Hyoung-Su;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.663-671
    • /
    • 2013
  • The width of Haeundae beach has been decreasing annually due to the loss of sand from land, high waves, reflected waves, etc.. The accurate prediction of wave-induced currents is indispensible to analyze the beach deformation due to the sediment transport. In the this study, Numerical experiments were performed with seasonal representative wave on the basis of a long term and comprehensive survey data. In summer, we found the deposition of Mipo by longshore current eastly by ordinary and S waves, and in winter, the deposition of Dongback-island by longshore current westly by ordinary and E waves. In addition, rip current occurs in the middle of Haeundae beach by 50 year return period wave and current westly along the coast by ESE directional wave.

Monitoring System of Sandbar Variation of Estuary using Video-based Technique (비디오를 이용한 하구 사주 변화 모니터링 시스템(I) - Hardware System 구축을 중심으로 -)

  • Yoon, Han-Sam;Ryu, Seung-Woo;Kang, Tae-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.630-636
    • /
    • 2008
  • Monitoring the location of the shoreline and foreshore changes through the time and core tasks are carried out by coastal engineers for a wide range of research. With the advent of digital imaging technology, the shore-based video monitoring system provides many advantages than field surveys. This study presents the development and construction(installation) of video monitoring system to assist the study of coastal and shoreline dynamics and evolution, especially sandbar variation at the Nakdong river estuary. For the purpose of this study, at high building near the Dadea-po beach (St. 2) and Jinudo(island) (St. 1) foreshore region, where coastline variation is highly active, 5 video cameras installed; the coastline movement has monitored since Aug. 2007 using the systems. From the image results of video camera, the 'Spit' type sandbar appears at the foreshore region of Doyodeung and Dadea-po beach and measured the deposition process of Jinudo(island) foreshore region. As a result, the monitoring system using video-based technique built in this study would be able to identify changes in the area and width of shoreline and beach of Nakdong river estuary.

First report of Amphidinium fijiense(Dinophyceae) from the intertidal zone of a sandy beach of Jeju Island, Korea

  • Su-Min Kang;Taehee Kim;Joon-Baek Lee;Jang-Seu Ki;Jin Ho Kim
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.497-509
    • /
    • 2022
  • A strain of Amphidinium species was established from samples collected from the intertidal zone of a sandy beach of Jeju Island, Korea. Its cells were 13.0-15.0 ㎛ in length and 10.0-13.0 ㎛ in width. Its cell shape was round or oval and dorsoventrally flat. A pyrenoid was located in the center of the cell and a nucleus was posteriorly located. Its epicone was small and left-deflecting. Its cingulum had V-shape on the ventral side, forming a ventral ridge and extending to the sulcus. Polygonal amphiesmal vesicles and ring-shaped body scales not described previous were observed on the surface of the cell. Its morphological features were consistent with those of previously described Amphidinium fijiense. Phylogeny based on ITS region and LSU rDNA sequences revealed that this Amphidinium isolate was clearly clustered with other A. fijiense strains, but separated from other Amphidinium species. These results indicate that this Amphidinium isolate is A. fijiense. This study reports its presence for the first time in the intertidal zone of a sandy beach of Jeju Island, Korea.

Beach Sediments of the Jeju Island, Korea (제주(濟州) 연안(沿岸)의 해빈퇴적물(海濱堆積物)에 관(關)한 연구(硏究))

  • Youn, Jeong-Su
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1985
  • Studies based on field observation and laboratory analysis of the littoral sands of beaches in Jeju Island indicate that the shores exhibit a great variation in both the beach geometry and the composition in terms of geological agents. Most of the beaches around the Island are developed in relatively small patches and discontinuous, as the result of intervening sea cliffs and rocky headlands. The sand quality and the dimensions of the beaches in the Island are relatively poor; for example, these beaches are 220~2,780m in length, 41~313m in width, and $7^{\circ}$ steepness in average foreshore slope. According to the textural parameters analysis, the beach sediments in study portion shows medium grained ($average\;1.42{\phi}$), moderately well sorted ($average\;0.65{\phi}$) and negative skewed ($average\;0.34{\phi}$), which seems to reflecting a high energy marine depositional environment. The heavy and light minerals of te beach sediments are composed of quartz, volcanic fragments, Na-Ca feldspar, olivine, augite as major constituents, along with apatite, biotite and other minor components, which originates from the adjacent geology. The content of CaO-MgO in shell fragments of the littoral sands ranged from 4.69~51.96%, suggesting that the high CaO-MgO content in some of the Island's beaches is attributable to geologic environments conducive to the growth of shell organisms and sediments migration. The provenance of the sediments studied are derived predominantly from adjacent continental shelves and/or terrigenous older river portion, Which sediments were transported mostly by rolling or bottom suspension. The depositional environments of the Jeju beaches can be divided into two types: beaches distributed in the North and the Northeastern parts of the Island are dominated by marine enviroment, whereas beaches in the Southwestern portion are characterized by terrigenous agencies.

  • PDF

A Comparison on the Forest Type of Coastal Disaster Prevention Forest Between the Coastal Areas in Korea (우리나라 해안별 해안방재림의 유형특성 비교)

  • Kim, Chan-Beom;Park, Ki-Hyung;Lee, Chang-Woo;Youn, Ho-Joong;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.564-573
    • /
    • 2014
  • The objective of this study was to select a representative coastal disaster prevention forest type for each coastal area. In this study, we used cluster analysis with the results obtained from investigation for density of growing stock, tree height, DBH, and forest width and length of major coastal disaster prevention forests distributed in the west, the south, and the east coasts. The results showed that the coastal disaster prevention forests for each coast were classified into two types: a forest type with small DBH and high growing stock density (W1) or with high tree height (W2) in the west coast, a forest type with small tree height (S1) or with large DBH (S2) in the south coast, and a forest type with small growing stock density (E1) or with small tree height and low DBH (E2) in the east coast. The coastal disaster prevention forests located in Gurye beach (Hwangchon-ri, Wonbuk-myeon, Taean-gun, Chungcheongnam-do) and in Gohsapo beach (Unsna-ri, Byeonsan-myeon, Buan-gun, Jeollabuk-do) were selected as the representative forests of W1 and W2, respectively. In addition, the coastal disaster prevention forests located in Namyang beach (Namyang-ri, Seolcheon-myeon, Namhae-gun, Gyeongsangnam-do) and in Donggo beach (Donggo-ri, Sinji-myeon, Wando-gun, Jeollanam-do) were selected as the representative forests of S1 and S2, respectively. Last, the coastal disaster prevention forests located in Bonggil beach (Bonggil-ri, Yangbuk-myeon, Gyeongju-si, Gyeongsangbuk-do) and in Anmeok beach (Gyeonso-dong, Gangneung-si, Gangwon-do) were selected as the representative forests of E1 and E2, respectively. Our finding is expected to be used as baseline data in establishing the most appropriate coastal disaster prevention forest for each coast.

Field Monitoring Examination on Wave Energy Dissipation Effects by Submerged Artificial Reefs (현장관측을 통한 잠제의 파랑제어효과검토)

  • Kim, Kyu-Han;Shin, Bum-Shick
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a field monitoring on Namae beach erosion countermeasure in the east coast of Korea is conducted to verify its efficiency and effectiveness. The Namae Beach project has been carried out for six years with three years for planning and three years for actual construction. The planning phase of numerical model tests and investigations had been reported by Kim et al. (2008, 2011). The field monitoring confirms increase in the beach width after the submerged artificial reefs construction and is due to its wave energy dissipation effects. The field monitoring is performed at the seaward and landward of the countermeasures. The wave height reduction from the seaward side (depth h = 10.5 m) to the landward side (h = 3.7 m) of the reef is measured for wave transmission coefficient (Kt) analysis. The analysis shows 60% of deduction in wave energy due to the submerged artificial reefs.

Coastline Change on the Haeundae Beach using the Digital Aerial Photo (수치항공사진을 이용한 해운대해수욕장 해안선변화에 관한 연구)

  • Choi, Chul-Uong;Kim, Young-Seup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 2001
  • There has been considerable controversy over the changes in the size of the beaches in the Pusan area; any loss of beach area will have an immense effect on the tourism industry, which is an important source of income for the local economy. The best beaches in Korea are in the Pusan area and were visited by more than 8 million persons in 2000. It is expected that the number of visitors, drawn to the scenic vistas and convenient facilities of this area, will increase annually. Any loss in the size of these swimming beaches will have an important negative effect on tourism income. Therefore, the local governments have gone to great lengths to preserve these beaches, transporting tens of thousands of tons of sand to the beaches before they open each year at a cost of billions of won annually. In this study, we analyzed aerial photographs and tide data for the past 50 years using digital aerial photo analysis and GIS techniques for each 3-year interval. We abstracted beach DEM (digital elevation model) and ortho aerial photographs, and conducted a space analysis. As a result, we were able to identify changes in the area and width of sections of Haeundae Beach.

  • PDF

Estimation of Bathymetry Changes using Hyperspectral Measurements -Focused on Haeundae beach- (초미세분광 측정치를 이용한 해저지형 변화산정 - 해운대를 중심으로 -)

  • Yang, Intae;Jo, Young-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1335-1342
    • /
    • 2014
  • Shallow water depths were estimated using Compact Airborne Spectrographic Imager (CASI)-1500 and mapped to analyze the bottom bathymetry changes due to the rip currents in Haeundae beach, South Korea for the first time. The depths were estimated empirically using the maximum reflectances from 420nm to 597nm wavelength of CASI and 47 in situ water depth measurements, which were compared with ground-truth bathymetry measurements. The comparisons showed that the RMSE was 1.1m with a correlation coefficient of 0.76. In addition, CASI imagery showed remarkably detailed bottom features, especially those resulting from the rip currents within the beach. Two different channels carved by the rip current were analyzed and characterized with respect to the width and slope compared to surrounding regions. While the west side of the channel showed a wide and gentle slope, the east side of the channel showed a narrow and steep slope. The estimated bathymetry map revealed that the uneven offshore bottom features were related to the transport and accumulation of sediments by the rip current, which reaches hundreds of meters offshore. Accordingly, the accumulated sediments were estimated by adding topography changes compared to the depths of the non-rip current regions. The sediments were accumulated in off channels as much as almost twice the amount of annual sand supplements along the Haeundae beach.