• Title/Summary/Keyword: bcl2 protein

Search Result 637, Processing Time 0.03 seconds

Hsp90 Inhibitor, 17-AAG, Affects Early Embryonic Development and Apoptosis of Bovine Embryos (Hsp90의 저해제인 17-AAG의 처리에 따른 소 수정란의 배발달 및 세포사멸 양상)

  • Hong, Joo-Hee;Min, Sung-Hun;Lee, E-Nok;Son, Hyeong-Hoon;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.307-311
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of several cells. In our previous study, inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the pig embryonic and primary cells was reported. However, its role during early bovine embryonic development is not sufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on early bovine embryonic development. We also investigated several indicators of developmental potential, including structural integrity, gene expression (apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Bovine embryos were cultured in the CR1-aa medium with or without 17-AAG for 7 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG ($33.1{\pm}9.6$ vs $21.7{\pm}8.3%$). The structural integrity of the blastocysts was examined by differential staining. Blastocysts from the dbcAMP-treated group had higher numbers of ICM, TE, and total cells than those from the untreated group. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (11.2 vs 3.9, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation bovine blastocysts. The mRNA expression of the pro-apoptotic gene (Bax) increased in 17-AAG treated group, whereas expression of the antiapoptotic gene (Bcl-XL) decreased. In conclusion, Hsp90 also appears to play a direct role in bovine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with apoptosis-related genes expression in developing bovine embryos.

Molecular Aspects of Japanese Encephalitis Virus Persistent Infection in Mammalian Cells

  • Park Sun-Hee;Won Sung Yong;Park Soo-Young;Yoon Sung Wook;Han Jin Hyun;Jeong Yong Seok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.23-36
    • /
    • 2000
  • Japanese encephalitis virus (JEV) is the causative agent of a mosquito-borne encephalitis and is transmitted to human via persistently infected mosquito vectors. Although the virus is known to cause only acute infection, there were reports that showed neurological sequelae, latent infection in peripheral mononuclear cells, and recurrence of the disease after acute encephalitis. Innate resistance of certain cell lines, abnormal SN1 expression of the virus, and anti-apoptotic effect of cullular bcl-2 have been suggested as probable causes of JEV persistence even in the absence of defective interfering (DI) particles. Although possible involvement of DI particles in JEV persistence was suggested, neither has a direct evidence for DI presence nor its molecular characterization been made. Two questions asked in this study are whether the DI virus plays any role in JEV persistent infection if it is associated with and what type of change(s) can be made in persistently infected cells to avoid apoptosis even with the continuous virus replication, DI-free standard stock of JEV was infected in BHK-21, Vero, and SW13 cells and serial high multiplicity passages were performed in order to generate DI particles. There different-sized DI RNA species which were defective in both structural and nonstructural protein coding genes. Rescued ORFs of the DI genome maintained in-frame and the presence of replicative intermediate or replicative form RNA of the DI particles confirmed their replication competence. On the other hand, several clones with JEV persistent infection were established from the cells survived acute infections during the passages. Timing of the DI virus generation during the passages seemed coincide to the appearance of persistently infected cells. The DI RNAs were identified in most of persistently infected cells and were observed throughout the cell maintenance. One of the cloned cell line maintained the viral persistence without DI RNA coreplication. The cells with viral persistence released the reduced but continuous infectious JEV particle for up to 9 months and were refractory to homologous virus superinfection but not to heterologous challenges. Unlike the cells with acute infection these cells were devoid of characteristic DNA fragmentation and JEV-induced apoptosis with or without homologous superinfection. Therefore, the DI RNA generated during JEV undiluted serial passage on mammalian cells was shown to be biologically active and it seemed to be responsible, at least in part, for the establishment and maintenance of the JEV persistence in mammalian cells. Viral persistence without DI RNA coreplication, as in one of the cell clones, supports that JEV persistent infection could be maintained with or without the presence of DI particles. In addition, the fact that the cells with JEV persistence were resistant against homologous virus superinfection, but not against heterologous one, suggests that different viruses have their own and independent pathway for cytopathogenesis even if viral cytopathic effect could be converged to an apoptosis after all.

  • PDF

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells

  • Kim, Kyong;Kwak, Min-Kyu;Bae, Gong-Deuk;Park, Eun-Young;Baek, Dong-Jae;Kim, Chul-Young;Jang, Se-Eun;Jun, Hee-Sook;Oh, Yoon Sin
    • Nutrition Research and Practice
    • /
    • v.15 no.3
    • /
    • pp.294-308
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Allomyrina dichotoma larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear. This study examined the effects of ADLE on palmitate-induced lipotoxicity in a beta cell line of a rat origin, INS-1 cells. MATERIALS/METHODS: ADLE was administered to high-fat diet treated mice. The expression of apoptosis-related molecules was measured by Western blotting, and reactive oxidative stress generation and nitric oxide production were measured by DCH-DA fluorescence and a Griess assay, respectively. RESULTS: The administration of ADLE to HFD-induced diabetic mice reduced the hyperplasia, 4-hydroxynonenal levels, and the number of apoptotic cells while improving the insulin levels compared to the HFD group. Treatment of INS-1 cells with palmitate reduced insulin secretion, which was attenuated by the ADLE treatment. Furthermore, the ADLE treatment prevented palmitate-induced cell death in INS-1 cells and isolated islets by reducing the apoptotic signaling molecules, including cleaved caspase-3 and PARP, and the Bax/Bcl2 ratio. ADLE also reduced the levels of reactive oxygen species generation, lipid accumulation, and nitrite production in palmitate-treated INS-1 cells while increasing the ATP levels. This effect corresponded to the decreased expression of inducible nitric oxide synthase (iNOS) mRNA and protein. CONCLUSIONS: ADLE helps prevent lipotoxic beta-cell death in INS-1 cells and HFD-diabetic mice, suggesting that ADLE can be used to prevent or treat beta-cell damage in glucose intolerance during the development of diabetes.

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells (폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성)

  • Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.449-460
    • /
    • 2004
  • Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

Hsp90 Inhibitor Induces Cell Cycle Arrest and Apoptosis of Early Embryos and Primary Cells in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bel-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MIT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG ($2{\mu}M$) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.

Identification of Oocyte-Specific Diva-Associated Proteins using Mass Spectrometry (Mass Spectrometry를 이용한 난자 특이적인 Diva와 상호작용하는 단백질의 동정)

  • Yoon, Se-Jin;Kim, Jung-Woong;Choi, Kyung-Hee;Lee, Sook-Hwan;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2006
  • Objective: We previously described that Diva is highly expressed in matured metaphase II (MII) oocytes compared to immature germinal vesicle (GV) oocytes in mouse. We report here that the expression of Diva transcript as well as protein is oocyte-specific. To elucidate its physiological role in oocyte, the binding partner(s) of Diva has been identified by using immunoprecipitation (IP) followed by Mass Spectrometry. Methods: NIH/3T3 cells were transiently transfected for 24 h with either empty vector for control or FLAG-tagged mouse Diva construct, and IP was performed with anti-FLAG antibody. The immuno-isolated complexes were resolved by SDS-PAGE on a 12% gel followed by Coomassie Blue staining. For in-gel digestion, 15 bands of interest were excised manually and digested with trypsin. All mass spectra were acquired at a positive reflector mode by a 4700 Proteomics Analyzer (Applied Biosystems, Framingham, MA). Proteins were identified by searching the NCBI nonredundant database using MASCOT Peptide Mass Fingerprint software (Matrixscience, London). Results: Diva-associated complexes were formed in FLAG-tagged mouse Diva-overexpressed NIH/3T3 cells via IP using anti-FLAG-conjugated beads. Among the excised 15 bands, actin and actin-binding proteins such as tropomyosin, tropomodulin 3, and ${\alpha}$-actinin were identified. Binding between Diva and actin or tropomyosin was confirmed by IP followed by Western blot analysis. Both bindings were also detected endogenously in mouse ovaries, indicating that Diva works with actin and tropomyosin. Conclusions: This is the first report that immuno-isolated Diva-associated complexes are related to actin filament of the cytoskeletal system. When we consider the association of Diva with actin and tropomyosin, oocyte-specific Diva may play a role in modulating the cytoskeletal system during oocyte maturation.