• 제목/요약/키워드: bayesian theory

검색결과 142건 처리시간 0.023초

힘 확률 대비 이론에 기반을 둔 인과 추론 연구 (Causal reasoning studies with a focus on the Power Probabilistic Contrast Theory)

  • 박주용
    • 인지과학
    • /
    • 제27권4호
    • /
    • pp.541-572
    • /
    • 2016
  • 인과 추론은 심리학에서는 물론 최근 베이스 접근법을 취하는 인지과학자들에 의해서도 활발히 연구되고 있다. 본 연구는 인과추론에 대한 대표적 심리학 이론인 힘-확률대비이론(a power probabilistic contrast theory of causality)을 중심으로 인과 추론의 최근 동향을 개관하고자 한다. 힘-확률대비이론에서는, 원인은 결과를 일으키거나 억제하는 힘(power)인데, 이 힘은 특정한 조건하에서 통계적 상관을 통해 파악될 수 있다고 가정한다. 본 논문에서는 이 이론에 대한 초기의 경험적 지지 증거를 먼저 살펴본 다음, 베이스 접근에 기반을 둔 이론과의 쟁점을 명확히 하고, 원인은 맥락에 무관하게 동일하게 작동한다는 인과적 불변성 가정(causal invariance hypothesis)을 중심으로 한 보다 최근의 연구 결과를 소개하고자 한다. 이 연구들은 종래의 통계적 접근법으로는 잘 설명되지 않는 결과를 제시함으로써, 철학, 통계학, 그리고 인공 지능 등과 같은 인접 분야에 인과성에 대한 힘 이론을 진지하게 고려할 것을 촉구하고 있다.

LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조 (LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition)

  • 이준호
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF

베이지안 기법을 이용한 염해 콘크리트 구조물의 내구성 평가 (Durability Assesment for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach)

  • 정현준;지광습
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.589-594
    • /
    • 2007
  • This paper is shown new method for durability assesment and design have been noticed to be very valuable has been successfully applied to predict concrete structures. This paper provides that a new approach for predicting the corrosion durability of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successive1y by the Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures under chloride attack environments.

  • PDF

Recent advances in Bayesian inference of isolation-with-migration models

  • Chung, Yujin
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.37.1-37.8
    • /
    • 2019
  • Isolation-with-migration (IM) models have become popular for explaining population divergence in the presence of migrations. Bayesian methods are commonly used to estimate IM models, but they are limited to small data analysis or simple model inference. Recently three methods, IMa3, MIST, and AIM, resolved these limitations. Here, we describe the major problems addressed by these three software and compare differences among their inference methods, despite their use of the same standard likelihood function.

베이지안 실험계획법의 이해와 응용 (Understanding Bayesian Experimental Design with Its Applications)

  • 이군희
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1029-1038
    • /
    • 2014
  • 본 연구에서는 베이지안 실험계획법에 대하여 논의하고 간단한 모의실험을 통하여 최적화된 베이지안 실험계획법이 어떠한 특징을 가지고 있는지 설명하였다. 실험을 설계하는 경우 연구자는 관심있는 주제가 모수추정인지 아니면 예측인지를 결정하고 사전확률과 우도함수를 기반으로 이에 맞는 사후확률을 찾아 효용함수와 결합하여 최적의 실험설계를 찾는 것이 베이지안 실험계획법의 기본 원리이다. 만일 사전적 정보가 존재하지 않는다면 무정보적 부적합 사전확률을 이용하여 실험을 설계할 수 있으며, 이는 비 베이지안적 접근방법과 일치하게 된다. 만일 모수나 예측값에 대한 사전적 정보가 존재하는 경우에는 베이지안 실험계획법이 유일한 해결 방법이다. 하지만 모형의 복잡도가 증가하게 되면, 최적해를 찾는 과정이 매우 복잡해져서 극복해야 하는 많은 문제점들이 존재하므로 향후 많은 연구가 필요한 분야이다.

Optimal Network Defense Strategy Selection Based on Markov Bayesian Game

  • Wang, Zengguang;Lu, Yu;Li, Xi;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5631-5652
    • /
    • 2019
  • The existing defense strategy selection methods based on game theory basically select the optimal defense strategy in the form of mixed strategy. However, it is hard for network managers to understand and implement the defense strategy in this way. To address this problem, we constructed the incomplete information stochastic game model for the dynamic analysis to predict multi-stage attack-defense process by combining Bayesian game theory and the Markov decision-making method. In addition, the payoffs are quantified from the impact value of attack-defense actions. Based on previous statements, we designed an optimal defense strategy selection method. The optimal defense strategy is selected, which regards defense effectiveness as the criterion. The proposed method is feasibly verified via a representative experiment. Compared to the classical strategy selection methods based on the game theory, the proposed method can select the optimal strategy of the multi-stage attack-defense process in the form of pure strategy, which has been proved more operable than the compared ones.

실내 측위 결정을 위한 Fingerprinting Bayesian 알고리즘 (Fingerprinting Bayesian Algorithm for Indoor Location Determination)

  • 이장재;권장우;정민아;이성로
    • 한국통신학회논문지
    • /
    • 제35권6B호
    • /
    • pp.888-894
    • /
    • 2010
  • 무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선 네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식은 준비 단계와 실시간 측위 단계로 구성되고 정확한 위치 측정을 위해 보다 효율적이고 정확해야 한다. 본 논문에서는 Fingerprinting 방식에 대한 베이지안 알고리즘으로 강력한 통계적 학습 이론인 베이지안 학습을 결합한 퍼지 군집화를 이용하여 실내 측위를 결정하는 알고리즘을 제안하였다.

Fuzzy 개념을 이용한 RC도로교의 건전성평가 모델 개발 (Development of Integrity Assessment Model for Reinforced Concrete Highway Bridges Using Fuzzy Concept)

  • 나기현;박주원;이증빈;정철원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.151-161
    • /
    • 1998
  • In this study, an attempt is made to apply the concept of fuzzy-bayesian theory to the integrity assessment of RC highway bridge, and uncertainty states are represented in terms of fuzzy sets which define several linguistic variables such as "very good", "good", "average", "poor", "very poor", etc. Especially, the concept of fuzzy conditional probability aids to derive a new reliability analysis which includes the subjective assessment of engineers without introducing any additional correction factors. The fuzzy concept are also used as reliability indexes for the condition assessment based on the proposed models, the proposed fuzzy theory-based approach with the results of visual inspection and extensive field load tests are applied to the integrity assessment of a new RC highway bridge, namely, Jichok bridge.

  • PDF

베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형 (Bayesian analysis of insurance risk model with parameter uncertainty)

  • 조재린;지혜수;이항석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2016
  • 모수불확실성을 반영하는 손실모형으로는 Heckman과 Meyers가 제안한 모형이 주로 인용되고 있다. 이 모형은 모수 자체가 어떤 확률분포를 따른다는 가정을 하고 있으며 IAA, Swiss Solvency Test, EU Solvency II 등에서 참고하고 있다. 반면 베이지안 기법을 이용한 연구는 모수에 대한 선험적 정보 즉, 사전분포를 이용하여 모수불확실성을 반영한다. 그러나 현실에서는 두 가지 방법을 동시에 고려해야 하는 상황이 빈번히 발생한다. 이에 본 연구는 Heckman-Meyers의 모형과 베이지안 접근법을 동시에 고려한 베이지안 H-M CRM모형을 제안하고 그 특성을 분석하였다.

베이지안 분류기를 이용한 소프트웨어 품질 분류 (Software Quality Classification using Bayesian Classifier)

  • 홍의석
    • 한국IT서비스학회지
    • /
    • 제11권1호
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.