• Title/Summary/Keyword: bayesian network

Search Result 516, Processing Time 0.029 seconds

Rule-based and Probabilistic Event Recognition of Independent Objects for Interpretation of Emergency Scenarios (긴급 상황 시나리오 해석을 위한 독립 객체의 규칙 기반 및 확률적 이벤트 인식)

  • Lee, Jun-Cheol;Choi, Chang-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2008
  • The existing event recognition is accomplished with the limited systematic foundation, and thus much longer learning time is needed for emergency scenario interpretation due to large scale of probability data. In this paper, we propose a method for nile-based event recognition of an independent object(human) which extract a feature vectors from the object and analyze the behavior pattern of each object and interpretation of emergency scenarios using a probability and object's events. The event rule of an independent object is composed of the Primary-event, Move-event, Interaction-event, and 'FALL DOWN' event and is defined through feature vectors of the object and the segmented motion orientated vector (SMOV) in which the dynamic Bayesian network is applied. The emergency scenario is analyzed using current state of an event and its post probability. In this paper, we define diversified events compared to that of pre-existing method and thus make it easy to expand by increasing independence of each events. Accordingly, semantics information, which is impossible to be gained through an.

  • PDF

An Emotional Gesture-based Dialogue Management System using Behavior Network (행동 네트워크를 이용한 감정형 제스처 기반 대화 관리 시스템)

  • Yoon, Jong-Won;Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.779-787
    • /
    • 2010
  • Since robots have been used widely recently, research about human-robot communication is in process actively. Typically, natural language processing or gesture generation have been applied to human-robot interaction. However, existing methods for communication among robot and human have their limits in performing only static communication, thus the method for more natural and realistic interaction is required. In this paper, an emotional gesture based dialogue management system is proposed for sophisticated human-robot communication. The proposed system performs communication by using the Bayesian networks and pattern matching, and generates emotional gestures of robots in real-time while the user communicates with the robot. Through emotional gestures robot can communicate the user more efficiently also realistically. We used behavior networks as the gesture generation method to deal with dialogue situations which change dynamically. Finally, we designed a usability test to confirm the usefulness of the proposed system by comparing with the existing dialogue system.

Review on Study Approaching Methods to Prevent Human Errors (인적오류 예방을 위한 연구접근방법 고찰)

  • Yim, Jeong-Bin;Yang, Hyeong-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.191-193
    • /
    • 2016
  • 인적오류 예방은 해양사고 예방에 가장 중요한 이슈로 현재 인식되고 있다. 현재 이러한 인적오류를 예방하기 위한 다양한 과학적인 기법들이 등장하고 있으나, 실제 인적오류를 예방할 수 있는 기법은 아직 개발되어 있지 못한 실정이다. 그 이유는 인적오류의 발생 원인과 특징이 사람을 대상으로 하기 때문에 실로 방대하고 원인식별이 어려우며, 원인과 결과 사이의 인과관계 구축에는 한계가 있기 때문이다. 기존 개발된 다양한 기법들은 이론적으로는 완벽할 수 있으나, 실제 방대한 원인과 결과 사이에 형성된 연계체인을 모두 흡수하기가 곤란하기 때문이다. 현재 IMO의 공식안전성평가(FSA) 기법이 해상분야에 널리 적용되고 있으나 구체적으로 어떠한 기법을 적용하여 인적오류를 적용할 수 있는지에 대해서는 아직도 애매모호한 실정이다. FTA, ETA, FEMA, SWIFT 등 다양한 분석기법의 등장과 AI, Fuzzy, MMC, Kalman 등 기초과학분야의 기본적인 이론과 기술을 적용할 수 있으나 인간의 인적오류 식별과 분석 및 평가와 예측에는 한계가 있는 것이 현재의 실정이다. 한편 최근에는 기존에 많은 문제점을 내포하고 있는 것으로 고려되었던 베이지안 네트워크(Bayesian Network, BN)가 다시 분석과 예측 분야에 등장하고 있는데, BN의 장점을 수용하고 단점을 해결할 수 있는 방법들이 연구되고 있기 때문이다. BN의 장점은 전방추론과 후방추론을 적용하여 사고의 원인과 결과를 분석한 후, 이에 대한 해결 방안을 식별할 수 있기 때문이다. BN의 단점은 이진(binary) 구조의 데이터만을 수용할 수 있기 때문에 상관 변수들이 방대한 경우 계산시간이 방대해지고 이를 모두 수용할 수 있는 방법이 없기 때문이다. 따라서 BN 구조를 어떻게 설계하는냐가 최근의 이수로 등장하고 있다. 본 연구에서는 이러한 제 문제점을 고찰하고 인적오류 모델 개발에 최적인 방법 또는 기술을 모색하는데 있다.

  • PDF

MOnCa2: High-Level Context Reasoning Framework based on User Travel Behavior Recognition and Route Prediction for Intelligent Smartphone Applications (MOnCa2: 지능형 스마트폰 어플리케이션을 위한 사용자 이동 행위 인지와 경로 예측 기반의 고수준 콘텍스트 추론 프레임워크)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.295-306
    • /
    • 2015
  • MOnCa2 is a framework for building intelligent smartphone applications based on smartphone sensors and ontology reasoning. In previous studies, MOnCa determined and inferred user situations based on sensor values represented by ontology instances. When this approach is applied, recognizing user space information or objects in user surroundings is possible, whereas determining the user's physical context (travel behavior, travel destination) is impossible. In this paper, MOnCa2 is used to build recognition models for travel behavior and routes using smartphone sensors to analyze the user's physical context, infer basic context regarding the user's travel behavior and routes by adapting these models, and generate high-level context by applying ontology reasoning to the basic context for creating intelligent applications. This paper is focused on approaches that are able to recognize the user's travel behavior using smartphone accelerometers, predict personal routes and destinations using GPS signals, and infer high-level context by applying realization.

Intelligent Diagnosing Method Based on the Conditional Probability for the Pancreatic Cancer Early Detection (췌장암 조기진단을 위한 조건부 확률 기반 지능형 진단 방식)

  • JANG, IK GYU;JUNG, JOONHO;KO, JAE HO;MOON, HYUN SEOK;JO, YUNG HO
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.227-231
    • /
    • 2017
  • Early diagnosis of pancreatic cancer had been considered one of the important barrier for successful therapy since the five year survival rate after treatment of pancreatic cancer was critically low. Nonetheless, patients often miss the golden time of treatment because they rarely visit the hospital until their symptoms are severe. To overcome these problems, a lot of information about the patient's symptoms should be applied as biomarkers for early diagnosis. For this reason, a biomarker for early detection of pancreatic cancer (CA19-9) has been developed as a diagnostic kit. However, since the diagnosis is not accurate enough, pancreatic symptoms (abdominal pain, jaundice, anorexia, diabetes, etc.) and biomarkers (CA19-9) should be considered together. We develop an intelligent diagnostic system that considers CA19-9 and the incidence of pancreatic cancer for pancreatic symptoms that was determined by studying a large number of patient information. It shows a higher accuracy than one using CA19-9 alone. It may increase the survival rate of pancreatic cancer because it can diagnose pancreatic cancer early.

Multi-focus Image Fusion Technique Based on Parzen-windows Estimates (Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법)

  • Atole, Ronnel R.;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.

  • PDF

Design and Implementation of Contents based on XML for Efficient e-Learning System (e-Learning 시스템을 위한 XML기반 효율적인 교육 컨텐츠의 설계 및 구현)

  • Kim, Young-Gi;Han, Sun-Gwan
    • Journal of The Korean Association of Information Education
    • /
    • v.5 no.2
    • /
    • pp.279-287
    • /
    • 2001
  • In this paper, we have defined and designed the structure of standardized XML content for supplying efficient e-Learning contents. We have also implemented the prototype of XML contents generator to create the educational contents easily. In addition, we have suggested the contents searching method using Case Base Reasoning and Bayesian belief network to supply XML contents suitable to learners request. The existing e-Learning system based on HTML could not customize and standardize, but XML contents can be reused and made an intelligent learning by supplying an adaptive content according to learners level. For evaluating the efficiency of designed XML content, we make the standard XML content for learning JAVA program in e-Learning system as well as discussing about the integrity and expanding the educational content. Finally, we have shown the architecture and effectiveness of the knowledge-based XML contents retrieval manager.

  • PDF

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.

Robust Particle Filter Based Route Inference for Intelligent Personal Assistants on Smartphones (스마트폰상의 지능형 개인화 서비스를 위한 강인한 파티클 필터 기반의 사용자 경로 예측)

  • Baek, Haejung;Park, Young Tack
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.190-202
    • /
    • 2015
  • Much research has been conducted on location-based intelligent personal assistants that can understand a user's intention by learning the user's route model and then inferring the user's destinations and routes using data of GPS and other sensors in a smartphone. The intelligence of the location-based personal assistant is contingent on the accuracy and efficiency of the real-time predictions of the user's intended destinations and routes by processing movement information based on uncertain sensor data. We propose a robust particle filter based on Dynamic Bayesian Network model to infer the user's routes. The proposed robust particle filter includes a particle generator to supplement the incorrect and incomplete sensor information, an efficient switching function and an weight function to reduce the computation complexity as well as a resampler to enhance the accuracy of the particles. The proposed method improves the accuracy and efficiency of determining a user's routes and destinations.