The existing event recognition is accomplished with the limited systematic foundation, and thus much longer learning time is needed for emergency scenario interpretation due to large scale of probability data. In this paper, we propose a method for nile-based event recognition of an independent object(human) which extract a feature vectors from the object and analyze the behavior pattern of each object and interpretation of emergency scenarios using a probability and object's events. The event rule of an independent object is composed of the Primary-event, Move-event, Interaction-event, and 'FALL DOWN' event and is defined through feature vectors of the object and the segmented motion orientated vector (SMOV) in which the dynamic Bayesian network is applied. The emergency scenario is analyzed using current state of an event and its post probability. In this paper, we define diversified events compared to that of pre-existing method and thus make it easy to expand by increasing independence of each events. Accordingly, semantics information, which is impossible to be gained through an.
Since robots have been used widely recently, research about human-robot communication is in process actively. Typically, natural language processing or gesture generation have been applied to human-robot interaction. However, existing methods for communication among robot and human have their limits in performing only static communication, thus the method for more natural and realistic interaction is required. In this paper, an emotional gesture based dialogue management system is proposed for sophisticated human-robot communication. The proposed system performs communication by using the Bayesian networks and pattern matching, and generates emotional gestures of robots in real-time while the user communicates with the robot. Through emotional gestures robot can communicate the user more efficiently also realistically. We used behavior networks as the gesture generation method to deal with dialogue situations which change dynamically. Finally, we designed a usability test to confirm the usefulness of the proposed system by comparing with the existing dialogue system.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2016.05a
/
pp.191-193
/
2016
인적오류 예방은 해양사고 예방에 가장 중요한 이슈로 현재 인식되고 있다. 현재 이러한 인적오류를 예방하기 위한 다양한 과학적인 기법들이 등장하고 있으나, 실제 인적오류를 예방할 수 있는 기법은 아직 개발되어 있지 못한 실정이다. 그 이유는 인적오류의 발생 원인과 특징이 사람을 대상으로 하기 때문에 실로 방대하고 원인식별이 어려우며, 원인과 결과 사이의 인과관계 구축에는 한계가 있기 때문이다. 기존 개발된 다양한 기법들은 이론적으로는 완벽할 수 있으나, 실제 방대한 원인과 결과 사이에 형성된 연계체인을 모두 흡수하기가 곤란하기 때문이다. 현재 IMO의 공식안전성평가(FSA) 기법이 해상분야에 널리 적용되고 있으나 구체적으로 어떠한 기법을 적용하여 인적오류를 적용할 수 있는지에 대해서는 아직도 애매모호한 실정이다. FTA, ETA, FEMA, SWIFT 등 다양한 분석기법의 등장과 AI, Fuzzy, MMC, Kalman 등 기초과학분야의 기본적인 이론과 기술을 적용할 수 있으나 인간의 인적오류 식별과 분석 및 평가와 예측에는 한계가 있는 것이 현재의 실정이다. 한편 최근에는 기존에 많은 문제점을 내포하고 있는 것으로 고려되었던 베이지안 네트워크(Bayesian Network, BN)가 다시 분석과 예측 분야에 등장하고 있는데, BN의 장점을 수용하고 단점을 해결할 수 있는 방법들이 연구되고 있기 때문이다. BN의 장점은 전방추론과 후방추론을 적용하여 사고의 원인과 결과를 분석한 후, 이에 대한 해결 방안을 식별할 수 있기 때문이다. BN의 단점은 이진(binary) 구조의 데이터만을 수용할 수 있기 때문에 상관 변수들이 방대한 경우 계산시간이 방대해지고 이를 모두 수용할 수 있는 방법이 없기 때문이다. 따라서 BN 구조를 어떻게 설계하는냐가 최근의 이수로 등장하고 있다. 본 연구에서는 이러한 제 문제점을 고찰하고 인적오류 모델 개발에 최적인 방법 또는 기술을 모색하는데 있다.
MOnCa2 is a framework for building intelligent smartphone applications based on smartphone sensors and ontology reasoning. In previous studies, MOnCa determined and inferred user situations based on sensor values represented by ontology instances. When this approach is applied, recognizing user space information or objects in user surroundings is possible, whereas determining the user's physical context (travel behavior, travel destination) is impossible. In this paper, MOnCa2 is used to build recognition models for travel behavior and routes using smartphone sensors to analyze the user's physical context, infer basic context regarding the user's travel behavior and routes by adapting these models, and generate high-level context by applying ontology reasoning to the basic context for creating intelligent applications. This paper is focused on approaches that are able to recognize the user's travel behavior using smartphone accelerometers, predict personal routes and destinations using GPS signals, and infer high-level context by applying realization.
JANG, IK GYU;JUNG, JOONHO;KO, JAE HO;MOON, HYUN SEOK;JO, YUNG HO
Journal of Biomedical Engineering Research
/
v.38
no.5
/
pp.227-231
/
2017
Early diagnosis of pancreatic cancer had been considered one of the important barrier for successful therapy since the five year survival rate after treatment of pancreatic cancer was critically low. Nonetheless, patients often miss the golden time of treatment because they rarely visit the hospital until their symptoms are severe. To overcome these problems, a lot of information about the patient's symptoms should be applied as biomarkers for early diagnosis. For this reason, a biomarker for early detection of pancreatic cancer (CA19-9) has been developed as a diagnostic kit. However, since the diagnosis is not accurate enough, pancreatic symptoms (abdominal pain, jaundice, anorexia, diabetes, etc.) and biomarkers (CA19-9) should be considered together. We develop an intelligent diagnostic system that considers CA19-9 and the incidence of pancreatic cancer for pancreatic symptoms that was determined by studying a large number of patient information. It shows a higher accuracy than one using CA19-9 alone. It may increase the survival rate of pancreatic cancer because it can diagnose pancreatic cancer early.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.8
no.4
/
pp.75-88
/
2008
This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.
Journal of The Korean Association of Information Education
/
v.5
no.2
/
pp.279-287
/
2001
In this paper, we have defined and designed the structure of standardized XML content for supplying efficient e-Learning contents. We have also implemented the prototype of XML contents generator to create the educational contents easily. In addition, we have suggested the contents searching method using Case Base Reasoning and Bayesian belief network to supply XML contents suitable to learners request. The existing e-Learning system based on HTML could not customize and standardize, but XML contents can be reused and made an intelligent learning by supplying an adaptive content according to learners level. For evaluating the efficiency of designed XML content, we make the standard XML content for learning JAVA program in e-Learning system as well as discussing about the integrity and expanding the educational content. Finally, we have shown the architecture and effectiveness of the knowledge-based XML contents retrieval manager.
Proceedings of the Korean Society for Bioinformatics Conference
/
2001.10a
/
pp.165-196
/
2001
DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.
Journal of the Korea Society of Computer and Information
/
v.25
no.11
/
pp.41-50
/
2020
Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.
Much research has been conducted on location-based intelligent personal assistants that can understand a user's intention by learning the user's route model and then inferring the user's destinations and routes using data of GPS and other sensors in a smartphone. The intelligence of the location-based personal assistant is contingent on the accuracy and efficiency of the real-time predictions of the user's intended destinations and routes by processing movement information based on uncertain sensor data. We propose a robust particle filter based on Dynamic Bayesian Network model to infer the user's routes. The proposed robust particle filter includes a particle generator to supplement the incorrect and incomplete sensor information, an efficient switching function and an weight function to reduce the computation complexity as well as a resampler to enhance the accuracy of the particles. The proposed method improves the accuracy and efficiency of determining a user's routes and destinations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.