• 제목/요약/키워드: bayesian network

검색결과 516건 처리시간 0.029초

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교 (The performance of Bayesian network classifiers for predicting discrete data)

  • 박현재;황범석
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.309-320
    • /
    • 2020
  • 방향성 비순환 그래프(directed acyclic graph; DAG)라고도 하는 베이지안 네트워크(Bayesian network)는 변수 사이의 관계를 확률과 그래프를 통해 모형화할 수 있다는 점에서 최근 의학, 기상학, 유전학 등 여러 분야에서 다양하게 활용되고 있다. 특히 이산형 자료의 예측에 사용되는 베이지안 네트워크 분류분석기(Bayesian network classifier)가 최근 새로운 데이터 마이닝 기법으로 주목받고 있다. 베이지안 네트워크는 그 구조와 학습 방법에 따라 여러 가지 다양한 모형으로 분류할 수 있다. 본 논문에서는 서로 다른 성질을 가진 이산형 자료를 바탕으로 구조 학습 방법에 차이를 두어 베이지안 네트워크 모형을 학습시킨 후, 가장 간단한 방법인 나이브 베이즈 (naïve Bayes) 모형과 비교해 본다. 학습된 모형들을 여러 가지 실제 데이터에 적용하여 그 예측 정확도를 비교함으로써 최적의 분류 분석 결과를 얻을 수 있는지 살펴본다. 또한 각각의 모형에서 나타나는 그래프를 통해 데이터의 변수 사이의 관계를 비교한다.

나이브 베이지안 네트워크를 이용한 채프에코 탐지 및 제거 방법 (Chaff Echo Detecting and Removing Method using Naive Bayesian Network)

  • 이한수;유정원;박지철;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.901-906
    • /
    • 2013
  • Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.

망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석 (Bayesian Network-based Data Analysis for Diagnosing Retinal Disease)

  • 김현미;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.269-280
    • /
    • 2013
  • 본 논문에서 망막 질환 요인간의 의존도 분석을 위해 효율적인 분류기를 활용할 수 있는 방안을 제시하였다. 먼저 여러 베이지안 네트워크 중에서 TAN (Tree-Augmented Naive Bayesian Network), GBN(General Bayesian Network)과 Markov Blanket으로 특징축소된 GBN과의 분류성능과 예측정확률을 비교분석하였다. 그리고 처음으로, 높은 성능을 보인 TAN을 망막 질환 임상데이터의 의존도 분석에 적용하였다. 의존도 분석 결과, 망막 질환의 진단과 예후 예측에 활용의 가능성을 보였다.

베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발 (Context-aware application for smart home based on Bayesian network)

  • 정우용;김은태
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.179-184
    • /
    • 2007
  • 본 논문은 스마트 홈에서 베이지안 네트워크에 기반을 둔 보편성을 가지는 상황인식 시스템의 구현방법을 제안한다. 베이지안 네트워크는 각 센서정보를 바탕으로 거주자의 활동 및 스마트 홈의 상황에 대한 추론을 확률적으로 접근하는데 매우 유용한 수단이다. 하지만 센서 정보와 활동정보가 다양해짐에 따라 기존의 방법으로는 베이지만 네트워크를 구성하기가 힘들다. 따라서 본 논문에서는 상호정보를 통하여 보다 효율적으로 베이지안 네트워크를 구성하도록 하며, 시뮬레이션을 통하여 자료 취득하고 그에 따른 거주자의 활동인식의 결과를 보인다.

종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축 (Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm)

  • 유지오;김경중;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권12호
    • /
    • pp.1569-1580
    • /
    • 2004
  • 베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델로서 확실한 수학적 토대를 가지고 있다. 베이지안 네트워크의 구조론 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화 알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구 조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ASIA와 ALARM 네트워크에서 인공적으로 생성한 데이타를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 알 수 있었다.

베이지안 네트워크와 방사형 그래프를 이용한 섬망의 효과 규명 (The effect investigation of the delirium by Bayesian network and radial graph)

  • 이제영;배재영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.911-919
    • /
    • 2011
  • 최근 의학에서는 정신 질환과 관련된 위험 인자를 찾는 것이 중요해지고 있다. 인자들을 찾아서 인자들의 특성과 관련성을 파악하면 병을 사전에 예방 할 수 있다. 또한 이 연구는 의학 발전에 많은 도움을 줄 수 있다. 정신 질환에 대한 위험요인은 주로 로지스틱 회귀모형을 사용하여 찾아 왔다. 하지만 이 논문에서는 데이터마이닝 기법 중 CART, C5.0, 로지스틱, 신경망, 베이지안 네트워크 방법을 이용한다. 정신장애 질병인 섬망자료를 적용하여, 최적의 모형인 베이지안 네트워크 방법을 선택하였다. 이 베이지안 네트워크 기법을 위험 요소를 찾는데 사용하고, 이 위험인자 간의 관계를 방사형 그래프를 통해서 규명하였다.

빅데이터를 통한 대형할인매장 촉진활동 전략 분석 : 베이지언 네트워크기법 응용을 중심으로 (Developing an Efficient Promotion Strategy for a Multi-Product Retail Store : A Bayesian Network Application)

  • 김범수
    • 경영과학
    • /
    • 제34권2호
    • /
    • pp.15-33
    • /
    • 2017
  • This paper considers a Bayesian Network analysis for understanding the heterogeneous cross-category effects of different promotion activities and developing an efficient overall promotion strategy for a large retail store. More specifically we differentiate price reduction promotion and floor promotion and study their heterogeneous effect on consumer purchase behavior under a market basket setting. We then utilize Bayesian networks in identifying complex association structure in market basket dataset by analyzing the effects of different promotional activities and also include the effects of time, family income and size. We find from our Bayesian network analysis that the dominant cross-category promotion effect of price promotion is the indirect effect whereas the dominant cross-category promotion effect of floor promotion is the direct effect. Also, among the demographic variables we find that family size of the household is linked with more product categories compared to income and see that there are differences in the extent of the effects by product category. Finally, we also show the existence of products acting as a network hub and how they can be utilized by retailers faced with a limited marketing budget and suggest a more efficient promotion strategy.

Bayesian Network 기반 소규모 저수지의 수문학적 위험도 분석 모형 개발 (A Development of Hydrologic Risk Analysis Model for Small Reservoirs Based on Bayesian Network)

  • 김진국;김진영;권덕순;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.105-105
    • /
    • 2017
  • 최근 우리나라에서는 국지성호우로 인해 발생하는 돌발홍수에 방어하지 못하는 소규모 저수지에 대한 붕괴사고가 빈발하고 있다. 붕괴된 저수지를 살펴보면, 대체적으로 규모가 작아 체계적인 안전관리가 이루어지지 않거나 경과연수가 50년 이상인 필댐(fill dam) 형식으로 축조된 노후저수지로서 갑작스러운 홍수를 대응하는데 있어 매우 취약한 상태이다. 체계적으로 운영되는 대형댐에 비해 축조기간이 오래된 소규모 저수지의 경우, 저수지에 대한 수문학적 정보가 거의 없거나 미계측되어 보수보강이 필요한 저수지를 선정하거나 정량적인 위험도를 분석하는데 매우 어려운 실정이다. 이러한 이유로 본 연구에서는 노후된 소규모 저수지에 대한 수문학적 파괴인자들을 선정하여 Bayesian Network기반의 소규모 저수지 위험도 분석 모형을 구축하였다. 구축된 모형을 기준으로 고려될 수 있는 다양한 위험인자 및 이들 인자간의 연관성을 평가하였으며, 각각의 노드에 파괴인자를 노드로 할당하여 소규모 저수지의 위험도를 분석하였다. Bayesian Network기법의 도입으로 불확실한 상황을 확률로 표시하고, 복잡한 추론을 정량화된 노드의 관계로 단순화시켜 노드의 연결 관계로 표현하였다. 본 연구에서 제안된 모형은 노후된 소규모 저수지의 수문학적 위험도를 정량으로 분석하는 모형으로서 활용성이 높을 것으로 기대된다.

  • PDF

Locating Intersections for Autonomous Vehicles: A Bayesian Network Approach

  • Choi, Kyoung-Ho;Joo, Sung-Kwan;Cho, Seong-Ik;Park, Jong-Hyun
    • ETRI Journal
    • /
    • 제29권2호
    • /
    • pp.249-251
    • /
    • 2007
  • A novel idea is presented to locate intersections in a video sequence captured from a moving vehicle. More specifically, we propose a Bayesian network approach to combine evidence extracted from a video sequence and evidence from a database, maximizing evidence from various sensors in a systematic manner and locating intersections robustly.

  • PDF