• 제목/요약/키워드: bayesian classification

검색결과 254건 처리시간 0.03초

자동 카테고리 생성과 동적 분류 체계를 사용한 이메일 분류 (Classification of e-mail Using Dynamic Category Hierarchy and Automatic category generation)

  • 안찬민;박상호;이주홍;최범기;박선
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.79-89
    • /
    • 2004
  • 이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 증가는 사용자로 하여금 이메일을 좀더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있으나, 이는 단순히 유사도에 의해 메일을 그룹화 하는 수준이다. 본 논문에서는 벡터모델의 유사도를 기반으로 한 자동 카테고리 생성 방법과 동적분류체계 방법을 결합하여 새로운 이메일 자동 분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 다원분류하며 대량의 메일도 효율적으로 관리할 수 있다. 또한 메일을 동적으로 재분류 할 수 있게 함으로써 정확율을 높였다.

  • PDF

PCA와 동적 분류체계를 사용한 자동 이메일 계층 분류 (Automatic e-mail Hierarchy Classification using Dynamic Category Hierarchy and Principal Component Analysis)

  • 박선
    • 한국항행학회논문지
    • /
    • 제13권3호
    • /
    • pp.419-425
    • /
    • 2009
  • 인터넷 사용의 보편화로 인해 이메일의 양이 급속히 증가하고 있다. 이에 따라서 수신된 메일을 효율적이고 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류 기술들은 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 이메일의 다원분류 방법중 군집(clustering)을 이용한 분류 방법은 분류의 정확도가 떨어지고 분류 레이블이 없는 단점이 있으며, 분류(classification)를 이용한 방법은 미리 분류 레이블을 사용자가 지정해야 하며 학습시켜야 하는 단점을 갖는다. 본 논문에서는 PCA (Principal Component Analysis)를 기반으로 한 자동 카테고리 생성 방법과 동적 분류 체계 방법을 결합한 새로운 자동 이메일 계층 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

딥러닝 모형을 사용한 한국어 음성인식 (Korean speech recognition using deep learning)

  • 이수지;한석진;박세원;이경원;이재용
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.213-227
    • /
    • 2019
  • 본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.

베이지안 학습법에 기초한 전자상거래에서의 고객 성향 분류 연구 (A Study on The Customer Classification of the EC based on Bayesian Learning Model)

  • 전진호;이계성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (하)
    • /
    • pp.2149-2152
    • /
    • 2002
  • 활성화되고 있는 전자상거래에 있어서 단순히 정해진 정보를 고객에게 제공하는 범위를 벗어나 고객의 특성에 따라 고객에 맞는 정보를 제공함으로서 매출 신장을 통하여 이윤확대를 꾀할 수 있다. 그러므로 본 연구에서는 베이지안 학습법을 이용하여 회원고객의 특성에 따른 분류화를 통하여 잠재적 구매 고객에 대한 구매 스타일을 예측하여 타겟광고가 가능한 기법에 대해 연구하였다.

  • PDF

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

초음파 비파괴 검사기법에 의한 용접결함 분류성능 비교 (Performance Comparison of Welding Flaws Classification using Ultrasonic Nondestructive Inspection Technique)

  • 김재열;유신;김창현;송경석;양동조;김유홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself. Through this process, we comfirmed advantages/disadvantages of four algorithms and identified application methods of four algorithms.

  • PDF

Estimation for misclassified data with ultra-high levels

  • Kang, Moonsu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.217-223
    • /
    • 2016
  • Outcome misclassification is widespread in classification problems, but methods to account for it are rarely used. In this paper, the problem of inference with misclassified multinomial logit data with a large number of multinomial parameters is addressed. We have had a significant swell of interest in the development of novel methods to infer misclassified data. One simulation study is shown regarding how seriously misclassification issue occurs if the number of categories increase. Then, using the group lasso regression, we will show how the best model should be fitted for that kind of multinomial regression problems comprehensively.

슬라이딩 윈도우 기반 다변량 스트림 데이타 분류 기법 (A Sliding Window-based Multivariate Stream Data Classification)

  • 서성보;강재우;남광우;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권2호
    • /
    • pp.163-174
    • /
    • 2006
  • 분산 센서 네트워크에서 대용량 스트림 데이타를 제한된 네트워크, 전력, 프로세서를 이용하여 모든 센서 데이타를 전송하고 분석하는 것은 어렵고 바람직하지 않다. 그러므로 연속적으로 입력되는 데이타를 사전에 분류하여 특성에 따라 선택적으로 데이타를 처리하는 데이타 분류 기법이 요구된다. 이 논문에서는 다차원 센서에서 주기적으로 수집되는 스트림 데이타를 슬라이딩 윈도우 단위로 데이타를 분류하는 기법을 제안한다. 제안된 기법은 전처리 단계와 분류단계로 구성된다. 전처리 단계는 다변량 스트림 데이타를 포함한 각 슬라이딩 윈도우 입력에 대해 데이타의 변화 특성에 따라 문자 기호를 이용하여 다양한 이산적 문자열 데이타 집합으로 변환한다. 분류단계는 각 윈도우마다 생성된 이산적 문자열 데이타를 분류하기 위해 표준 문서 분류 알고리즘을 이용하였다. 실험을 위해 우리는 Supervised 학습(베이지안 분류기, SVM)과 Unsupervised 학습(Jaccard, TFIDF, Jaro, Jaro Winkler) 알고리즘을 비교하고 평가하였다. 실험결과 SVM과 TFIDF 기법이 우수한 결과를 보였으며, 특히 속성간의 상관 정도와 인접한 각 문자 기호를 연결한 n-gram방식을 함께 고려하였을 때 높은 정확도를 보였다.

베이지안 망에 기초한 불임환자 임상데이터의 분석 (Bayesian Network-Based Analysis on Clinical Data of Infertility Patients)

  • 정용규;김인철
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.625-634
    • /
    • 2002
  • 본 논문에서는 베이지안 망을 기초로 불임환자의 임상 데이터에 대한 다양한 분석 실험을 전개하였다. 이 실험을 통해 임신여부에 영향을 주는 요인들간의 상호의존성을 분석해보고, 또 NBN, BAN, GBN 등 제약조건이 다른 다양한 유형의 베이지안 망 분류기들의 분류성능을 서로 비교해보았다. 그리고 우리는 이와 같은 실험을 통해 임신가능여부(Clin)에 직접적인 영향을 미치는 중요한 요인들로 증상(IND), 약물치료법(stimulation), 여성의 나이(FA), 미세조작 난자의 수(ICT), Wallace 사용여부(ETM) 등 5개의 특성들을 가려낼 수 있었고, 이 요인들간의 상호 의존성도 찾아낼 수 있었다. 또 서로 다른 유형의 베이지안 망 분류기들 중에서 요인들간의 상호의존관계를 허용하는 좀 더 일반적인 BAN과 GBN 등이 그렇지 못한 NBN에 비해 상대적으로 더 높은 분류 성능을 보여준다는 것을 확인하였다. 또 결정트리와 k-최근접 이웃과 같은 다른 분류기들과의 성능 비교를 통해, 임상 데이터의 특성상 확률적 표현과 추론에 기초한 베이지안 망 분류기들이 보다 높은 성능을 보여준다는 사실도 확인할 수 있었다. 또 본 논문에서는 클래스 노드의 Markov blanket에 속한 특성들로 특성집합을 축소하는 것을 제안하고, 실험을 통해 이 특성 축소방법이 베이지안 망 분류기들의 성능을 높여 줄 수 있는지 알아보았다.