• Title/Summary/Keyword: battery charging

Search Result 659, Processing Time 0.028 seconds

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.

Economical Analysis of the PV-linked Residential ESS using HOMER in Korea (HOMER를 이용한 PV 연계 가정용 ESS의 경제성 분석)

  • Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.36-42
    • /
    • 2019
  • Europe and North America are paying attention to residential ESS(Energy Storage System) that can manage energy efficiently. The ESS is a system that stores and manages the electric power by charging and discharging the battery. The ESS is generally used in conjunction with photovoltaic systems. The ESS supplies the load of the power generation time and stores the remaining PV power to supply the load at the non-power generation time. However, due to the high price of residential ESS, low electric rates and increasing block rates, there is no market of residential ESS in Korea. This paper reviews the price condition and the capacity for applying PV and residential ESS to household of apartments using HOMER in Korea.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

The Research On the Energy Storage System Using SuperCapacitor (슈퍼커패시터를 적용한 에너지 저장시스템 설계에 관한 연구)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.215-222
    • /
    • 2018
  • In this paper, the research on the energy storage system adapting super-capacitor has been performed. The most advanced features compared to the conventional lead-acid battery systems is that it can obtain high power capability due to the super capacitor power characteristics. The suggested system can attain high power in short times and achieve high power quality improvements. The application areas are power quality improvement system, motor start power which requires high power during transient times. The energy conversion system consists of bi-directional converter and inverter and advantages of high speed, high power charging and discharging performances. The design steps for the two loop controller of the bi-directional inverter are suggested and verified by the experiment and manufacturing. The two loop controller design starts from linearized transfer function which is calculated from the state averaging model including state decoupling method. The current controller requirements are 20% overshoot and settling time and voltage controller are no overshoot and settling time which is 10 times longer than current controller. The design is verified from the step input response. The designed controllers have unity power factor characteristics and thus can improve the power quality of the grid. It also has fast response time and zero steady state error.

Orbital Transfer Process and Analysis of Small Satellite for Capturing Korean Satellite as Active Debris Removal (ADR) Mission (우리별 위성 포획 임무 수행을 위한 소형위성의 궤도 천이 방법 및 분석)

  • Junchan Lee;Kyungin Kang
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.101-117
    • /
    • 2023
  • Active debris removal, a technology that approaches and removes space debris in orbit, and the on-orbit service, a technology for extending the mission life of satellites by fuel charging or by exchanging the battery, are gaining interest with the growth of the space community. SaTReC plans to develop a satellite capable of capturing and removing Korean satellites orbiting in space after the end of their missions. In contrast to the previously launched satellites by Korea, which were mainly intended to observe Earth and the space environment, rendezvous/docking technologies, as required in the future during, for instance, space exploration missions, will be implemented and demonstrated. In this paper, an orbital transition method for next-generation small satellites that will capture and remove space debris will be introduced. It is assumed that a small satellite with a mass of approximately 200 kg will be injected into the mission orbit through Korea Space Launch Vehicle-II in 2027. Because the satellite must access the target using a minimum amount of fuel, an approaching technology using Earth's J2 perturbation force has been developed. This method is expected to enable space debris removal missions for relatively lightweight satellites and to serve as the basis for carrying out a new type of space exploration in what is termed the 'Newspace' era.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

Development of a Modular Clothing System for User-Centered Heart Rate Monitoring based on NFC (NFC 기반 사용자 중심의 모듈형 심박측정 의류 시스템 개발)

  • Cho, Hakyung;Cho, SangWoo;Cho, Kwang Nyun
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • This study aimed to develop a modular smart clothing system for heart rate monitoring that reduces the inconvenience caused by battery charging and the large size of measurement devices. The heart rate monitoring system was modularized into a temporary device and a continuous device to enable heart rate monitoring depending on the requirement. The temporary device with near-field communication (NFC) and heart rate sensors was developed as a clothing attachment type that enables heart rate monitoring via smart phone tagging when required. The continuous device is based on Bluetooth Low Energy (BLE) communication and batteries and was developed to enable continuous heart rate measurement via a direct connection to the temporary device. Furthermore, the temporary device was configured to connect with a textile electrode made of a silver-based knitted fabric designed to be located below the pectoralis major muscle for heart rate measurement. Considering the user-experience factors, key functions, and the ease of use, we developed an application to automatically log through smart phone tagging to improve usability. To evaluate the accuracy of the heart rate measurement, we recorded the heart rate of 10 healthy male subjects with a modular smart clothing system and compared the results with the heart rate values measured by the Polar RS800. Consequently, the average heart rate value measured by the temporary system was 85.37, while that measured by the reference device was 87.03, corresponding to an accuracy of 96.73%. No significant difference was found in comparison with the reference device (T value = -1.892, p = .091). Similarly, the average heart rate measured by the continuous system was 86.00, while that measured by the reference device was 86.97, corresponding to an accuracy of 97.16%. No significant difference was found in terms of the heart rate value between the two signals (T value = 1.089, p = .304). The significance of this study is to develop and validate a modular clothing system that can measure heart rates according to the purpose of the user. The developed modular smart clothing system for heart rate monitoring enables dual product planning by reducing the price increase due to unnecessary functions.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.