• Title/Summary/Keyword: battery charging

Search Result 659, Processing Time 0.021 seconds

An Efficient Battery Charging Algorithm based on State-of-Charge Estimation using 3-Phase AC-DC Boost Converter (3상 AC-DC 승압형 컨버터를 이용한 SOC 추정 기반의 효율적 배터리 충전 알고리즘)

  • Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.96-102
    • /
    • 2015
  • This paper presents battery charging method using 3-phase AC-DC boost converter. General battery charging method is that charging the battery voltage to the reference voltage according to the constant current(CC) control, when it reaches the reference voltage, charging the battery fully according to the constant voltage(CV) control. However, battery chaging time is increased because of the battery impedance, constant current charging section which shoud take the large amount of charge is narrow, and constant voltage charging section which can generate insufficient charge is widen. To improve this problem, we proposes the method to reduce the charging time according to the SOC(State of Charge) estimation using battery impedance.

Algorithm for Improving the Efficiency of Storing Electricity using Experiments of Charging Characteristics for Industrial Lead-Acid Battery (산업용 연축전지의 충전특성실험에 근거한 축전효율 개선 알고리즘)

  • Park, Yun-Ho;Jeon, Sun-Yong;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.432-441
    • /
    • 2000
  • It is difficult to analyze the charging characteristics of the lead-acid battery, because of the influences by various non-linear and time-variant parameters. In this study, the charging characteristics of high capacity industrial lead-acid battery 630 Ah was investigated through experiments with respect to the variations of temperature and the aged state of battery during the charging process. The database of those characteristics is established from the results of experiments, and the fuzzy logic charging algorithm is suggested using them. The results of experiment shows that the industrial lead-acid batteries can be always fully charged within the saved charging time by the proposed charging control algorithm adapting to the variations of charging condition. This new charging concept will be useful for developing the advanced battery charger improving the efficiency of storing electricity.

  • PDF

Design on Algorithm of Power Control Unit for Charging Satellite Battery (위성 배터리 충전을 위한 전력제어유닛의 알고리즘 설계)

  • Park, JeongEon;Lee, Byoung-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.95-99
    • /
    • 2017
  • The lifetime of a battery that supplies all the power required by a satellite in the eclipse is directly related to the lifetime of the satellite. Because the lifetime of the battery is influenced by the charging method of the battery, the power control unit that controls the charging of the battery should be designed in consideration of battery life. The battery charging is performed by controlling the charge current in the power control unit generated from the solar cell in the daytime. In order to prevent overcharge of the battery and for considering frequency of eclipse in each season, parameters related battery charging should be designed differently according to the season and to prevent over-current charging and over-voltage charging during charging, charge current is controlled by monitoring battery charge / discharge status, charge current amount, battery voltage, battery capacity, battery temperature and battery cell voltage. In satellite, tapering method is used to control charge current by reflecting each condition. In this paper, design battery charging algorithm of satellite power control unit using tapering charging method. convert the designed algorithm into a code that can be uploaded to satellites and verify the operation through testing in the established satellite environment.

A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis (경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구)

  • Kim, Si-Yeon;Hwang, Jae-Dong;Lim, Jong-Hun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

FAST CHARGING STRATEGY FOR LITHIUM ION BATTERY

  • Hoang, Thi Quynh Chi;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.70-71
    • /
    • 2014
  • In this paper, an advanced charging strategy for improving the charging performance of the Li-ion polymer battery is proposed, which is based on the battery characteristic. Simulation results show that the proposed charging current pattern can improve the charging speed of battery in comparison with the standard CC-CV (constant current - constant voltage) charging strategy and the pulse-charging strategy.

  • PDF

Constant Current & Constant Voltage Battery Charger Using Buck Converter (벅 컨버터를 이용한 정전류 정전압 배터리 충전기)

  • Awasthi, Prakash;Kang, Seong-Gu;Kim, Jeong-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.399-400
    • /
    • 2012
  • The proposed battery charger presented in this paper is suitable for Lead-Acid Battery and the dc/dc buck converter topology is applied as a charger circuit. The technique adopted in this charger is constant current & constant voltage dual mode, which is decided by the value of voltage of proposed battery. Automatic mode change function is detected by the percentage value of level of battery charging. CC Mode (Constant Current Mode) is operated when charging level is below 80% of the total charging of Battery voltage and above 80% of battery voltage charging, CV Mode (Constant Voltage Mode) is automatically operated. As the charging level exceeds 120%, it automatically terminates charging. The feedback signal to the PWM generator for charging the battery is controlled by using the current and voltage measurement circuits simultaneously. This technique will degrade the damage of proposed type of battery and improve the power efficiency of charger. Finally, a prototype charger circuit designed for a 12-V 7-Ah lead acid battery is constructed and tested to confirm the theoretical predictions. Satisfactory performance is obtained from simulation and the experimental results.

  • PDF

Power stage for Contact-less Induction Charging (비접촉식 충전기의 전력 전달부 설계)

  • 이민철;최배근;홍영욱;조규형
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2939-2942
    • /
    • 2003
  • A new contactless Li-ion battery charging system was proposed. The conventional methods for charging Li-ion battery have some weak points. For example, there can be a contact failure, a poor waterproof, and a difficulty to standardize the battery charging systems. The new proposed system can overcome these weak points. The new charging system is composed of power transfer part and data transfer part. This paper focuses on the power transfer part for contactless battery charging. The power stage is mainly composed of PPRC(Push-pull Parallel Resonant Converter) and flyback converter. The new method of chaging Li-ion battery was proposed and PPRC + flyback-boost topology was analyzed. The proposed toplogy was tested under the constant voltage control and the constant current control which are adequate for charging Li-ion battery.

  • PDF

An Improved Battery Charging Algorithm for PV Battery Chargers (태양광 배터리 충전기를 위한 개선된 충전 알고리즘)

  • Kim, Jung-Hyun;Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • In this paper, the proposed charging algorithm is converted from the charging mode to compensate the transient state in the solar battery charging system. The maximum power point tracking (MPPT) control methods and the various charging algorithms for the optimal battery charging are reviewed. The proposed algorithm has excellent transient characteristics compare to the previous algorithm by adding the optimal control method to compensate the transient state when the charging mode switches from the constant current mode to the constant voltage mode based on the conventional constant-current constant-voltage (CC-CV) charging algorithm. The effectiveness of the proposed method has been verified by simulations and experimental results.

Rapid-Charging Solution for 18650 Cylindrical Lithium-Ion Battery Packs for Forklifts

  • Kim, Dong-Rak;Kang, Jin-Wook;Eom, Tae-Ho;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.184-194
    • /
    • 2018
  • In this paper, we propose a rapid-charging system for the lithium-ion battery (LIB) packs used in electric forklifts. The battery offers three benefits: reduced charge time, prolonged battery life, and increased charging efficiency. A rapid-charging algorithm and DC/DC converter topology are proposed to achieve these benefits. This algorithm is developed using an electrochemical model, which controls the maximum charging current limit depending on the cell voltage and temperature. The experimental use of a selected 18650 LIB cell verified the prolongation of battery life on use of the algorithm. The proposed converter offers the same topological merits as a conventional resonant converter but solves the light-load regulation problem of conventional resonant converters by adopting pulse-width modulation. A 6.6-kW converter and charging algorithm were used with a forklift battery pack to verify this method's operational principles and advantages.

A study on the auto-charging circuit of the battery power units using trigger characteristics of semiconductor device (반도체 스위칭 소자의 트리거 특성을 이용한 배터리 자동 충전회로에 관한 연구)

  • 김영민;황종선;박성진;임종연;송승호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.519-522
    • /
    • 2001
  • Recently, the battery charging technology and reducing technology of harmonics on AC input line are rising importantly according to increasing electrical facilities that it has been replaced battery with emergency power. In this study, I proposed that an auto-charging circuit of battery has low cost with simple-construction circuit, relative, harmonics reduction with diode tap-change method, high reliability of system for using characteristics of thyristor switching. In case of this circuit, convenience and reliability of maintenance of battery power units were more improved. 1 think that it is resulted in effect of prevention to shortening of battery life from over-charging and over-discharging and decrease of harmonics obstacle on AC input line.

  • PDF