• Title/Summary/Keyword: bathymetry

Search Result 209, Processing Time 0.026 seconds

Derivation of Nonlinear Mild-Slope Equation and Numerical Simulation (비선형 완경사 방정식의 유도 및 수치모의)

  • Lee, Jung-Lyul;Park, Chan-Sung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.103-112
    • /
    • 2000
  • Early efforts to model wave transformation from offshore to inshore were based on the ray theory which accounts for wave refraction due to changes in bathymetry and the diffraction effects were ignored. Prediction of nearshore waves with the combined effects of refraction and diffraction as well as reflection has taken a new dimension with the use of the mild-slope equation and the Boussinesq equation. (omitted)

  • PDF

Development Trends of Tidal Current Energy and Its Test Bed (조류에너지의 이용기술)

  • Yang, Changjo;Hoang, T.G.
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • Tidal current energy is the most interesting renewable resources that have been less harnessed. Korea has globally outstanding tidal current energy resources and it is highly needed to develop a tidal current energy conversion system. It is reported that the total amount of available tidal current energy is approximately 6GW in Korea. A good tidal site candidate is required a large amount of fast moving water, bathymetry and seabed properties, no conflicts with other users and is close to a load and grid interconnection. In this review, we summarized the results of R&D projects regarding tidal current resources, utilization projects and demonstration test bed.

Numerical Simulation of Environmental Change in South West Offshore Wind Farm Using MIKE

  • Kim, Minsuek;Kim, Jiyoung;Jeon, In-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.145-152
    • /
    • 2021
  • Environmental change due to construction of large offshore wind farm has been a debate for a long time in Korea. There are various data acquired on hydrodynamics around this area before and during construction of offshore wind farm but no data during operation could be made due to delayed schedule. In this study, environmental change such as bathymetry change and scouring was forecasted using MIKE, numerical hydrodynamics model, and its results were validated using the observation data before and during construction.

Wind Effects on Tidal Currents in Gamak Bay

  • Lee, Moon-Ock;Kim, Byeong-Kuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.18-27
    • /
    • 2009
  • This study was conducted to examine the effect of wind on the circulation of seawater in Gamak Bay, which contains numerous farms for fish and shellfish but suffers a significant loss by fisheries nearly annually from harmful algal blooms. In numerical experiments with a simplified bathymetry for Gamak Bay, the wind in summer appeared to more strongly influence the east-westward flow than the south-northward flow. In winter, this trend was nearly similar to the summer but seemed to have a greater effect on the flow at the north-west of the bay than the flow at the south mouth of the bay. On the other hand, in numerical experiments with a realistic bathymetry for Gamak Bay, the wind in summer appeared to more strongly influence the east-westward flow than the south-northward flow. Furthermore, the effect of the wind was stronger at the south mouth of the bay than at the north-west of the bay. In contrast, the wind in winter affected the east-westward flow more strongly and its effect appeared stronger at the north-west of the bay than at the south mouth of the bay. In addition, the effect of the wind tended to increase with distance from the east to the west. Therefore, the tidal currents in Gamak Bay proved to be strongly influenced by the wind, in particular east-westward. However, some measures are urgently required to improve the water quality of the bay, since the south-northward flow turned out to be obstructed by an east-westward shoal located in the middle of the bay.

Marine Geoid around Korean Peninsula (한반도 주변 해양 지오이드)

  • Kim, Hyung-Ki;Choi, Byung-Ho;Yun, Hong-Sic;Kim, Kyeong-Ok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.621-629
    • /
    • 2008
  • Procedures involved in the refinement of the regional geoid for the area encompassing the Korean peninsula and the East Sea are described, and the computational results are provided. A comparison between the geoid height data, the mean sea surface height and the final product of the refinement work is provided and analyzed. The regional marine geoid thus refined seems to have a better resolution, in terms of its correlation with the bathymetry, and shows the bottom features in a more detailed manner when compared with previously used procedures. The general pattern of the computed geoid profile matches reasonably well with the existing studies, where the correlations between the refined regional marine geoid and the bathymetry are (1) 0.44 for the area $117{\sim}142.5^{\circ}E/24{\sim}52^{\circ}N$ and (2) 0.47 for the area $127{\sim}142.5^{\circ}E/32{\sim}50^{\circ}N$ in the East Sea respectively.

Ocean bottom reverberation and its statistical characteristics in the East Sea (동해 해역에서 해저면 잔향음 및 통계적 특징)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • In this study, we analyzed the beam time series of ocean reverberation which was conducted in the eastsouthern region of East Sea, Korea during the August, 2015. The reverberation data was gathered by moving research vessel towing LFM (Linear Frequency Modulation) source and triplet receiver array. After signal processing, we analyzed the variation of ocean reverberation level according to the seafloor bathymetry, source/receiver depth and sound speed profile. In addition, we used the normalized data by using cell averaging algorithm and identified the statistical characteristics of seafloor scatterer by using moment estimation method and estimated shape parameter. Also, we analyzed the coincidence of data with Rayleigh and K-distribution probability by Kolmogorov-Smirnov test. The results show that there is range dependency of reverberation according to the bathymetry and also that the time delay and the intensity level change depend on the depths of source and receiver. In addition, we observed that statistical characteristics of similar Rayleigh probability distribution in the ocean reverberation.

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

An Analysis of the Effect of Barrier Discharge on the Topographic Change of Nak-dong River Estuary (낙동강 하구둑 방류량이 하구지역 지형 변화에 미치는 영향 분석)

  • Tae-Uk Gong;Sung-Bo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.163-173
    • /
    • 2023
  • In this study, topographic change analysis was performed on the Nak-dong River estuary area. The factors affecting the changes in the bathymetry of the Nak-dong River estuary were analyzed using data from the discharge, suspended sediments, and rainfall of the Nak-dong River barrier as analysis data. As a result, erosion and sedimentation are judged to appear repeatedly due to complex effects such as discharge of the estuary barrier of the Nak-dong River and invasion of the open sea waves, and it is judged that there is no one-sided tendency. However, as a result of checking the data in the second half of 2020, it was possible to confirm a large amount of erosion, which is different from the past data. It is clear that this is a result beyond the trend of erosion in the first half and sedimentation in the second half. In the summer of 2020, the rainy season lasted for more than a month and torrential rains occurred, which seems to be due to about three times higher rainfall than other periods, and erosion is believed to have occurred as the discharge increased rapidly compared to the time deposited by river water outflow. In addition, compared to other times, the influence of many typhoons in the summer of 2020 is believed to have affected the topographical change at the mouth of the Nak-dong River.

Simulation of acoustic waves horizontal refraction using a three-dimensional parabolic equation model (3차원 포물선방정식을 이용한 음파의 수평굴절 모의)

  • Na, Youngnam;Son, Su-Uk;Hahn, Jooyoung;Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.131-142
    • /
    • 2022
  • In order to examine the possibility of horizontal simulations of acoustic waves on the environments of big water depth variations, this study introduces a 3-dimensional model based on the pababolic equation. The model gives approximated solutions by separating the cross- and non cross-terms in the equation. Assuming artificial bathymetry (25 km × 4 km) with a source frequency 75 Hz, the simulations give clear horizontal refractions on the transmission loss distributions. The degree of refractions shows non-linear increase along the propagating range and proportional increase with water depth along the cross range. Another simulations with the real bathymetry (25 km × 8 km) also give clear horizontal refractions. The horizontal distributions present little difference with the depth resolution variations of the same data source because the model gives interpolations over the depth data before simulations. Meanwhile, the horizontal distributions show big difference with those of different data sources.