• Title/Summary/Keyword: bathymetric data

Search Result 67, Processing Time 0.028 seconds

Variations of Sediment Textural Parameters and Topography around Gangneung Harbor after the Completion of Harbor Construction (강릉항 완공 후 주변해역의 퇴적물 조직변수와 지형의 변화)

  • Oh, Jae-Kyung;Bang, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.120-135
    • /
    • 2013
  • To investigate the changes in depositional environment around Gangneung Harbor, we analyzed the surface sediment textural parameters and topography data collected five times from February 2007 to February 2009. In the study area, sediments were mainly composed of sand and its sediment size became finer at offshore sites. During summer time, however, the sand grains became coarser than winter season near Namhangjin Beach, inside the harbor, and offshore areas. On the other hand, the grain size of Anmok Beach showed a gradual finer trend with time. Compared with the previous studies conducted before the completion of Gangneung Harbor construction, the mean grain size became finer on Anmok Beach, while it was coarser on Namhangjin Beach. The bathymetric changes observed over a 2-year period showed predominant erosion in the area of 5 to 10 m water depths and deposition in 2 to 5 m water depths. The shallower area less than 2 m water depths showed an alternating trend and yet slightly more dominant erosion process. The sediment textural parameters and the distribution of erosion and deposition have changed continuously. Results imply that such changes show long-term trends as well as seasonal variations in which the trend may have been formed after the completion of Gangneung Harbor construction.

Increasing Surveyed Area using Tilted Multi Beam Echo Sounder (멀티빔 음향측심기의 기울임 시스템을 이용한 계측영역 확대)

  • Park, Yosup;Hong, Jun-Pyo;Kong, Seong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.739-747
    • /
    • 2011
  • The paper presents implementation & evaluation of survey method with tilted transducer of Multi Beam Echo Sounder (MBES) to increase horizontal & vertical coverage over obstructed port environments with limited physical properties of MBES. Proposed method ($25^{\circ}$ titled transducer) have some discrepancy of bathymetric profiles between normal and tilting method, but we proved average difference is less than IHO Special Order requirements with survey data at port of Dong Ho Port, Masan, Korea. For horizontal mapping coverage of total survey area ($114,961m^2$), normal method covered 53%, $60,895m^2$ of total area but tilting method covered 75%, $5.933m^2$. It is 22% efficient than normal method with similar environments. For vertical mapping coverage of total vertical structure face ($7,421m^2$), normal method covered 14%, $1,046m^2$, proposed methods covered 60%, $4,450m^2$. And we adapt longitudal steel bar to validate MBES results, and provide calibration method with titled transducer of MBES.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

A Study of Three-dimensional Magnetization Vector Inversion (MVI) Modeling Using Bathymetry Data and Magnetic Data of TA (Tofua Arc) 12 Seamount in Tonga Arc, Southwestern Pacific (남서태평양 통가열도 TA (Tofua Arc) 12 해저산의 해저지형과 자력자료를 이용한 3차원 자화벡터역산 모델 연구)

  • Choi, Soon Young;Kim, Chang Hwan;Park, Chan Hong;Kim, Hyung Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.22-37
    • /
    • 2020
  • We analyze the comprehensive three-dimensional (3D) magnetic structure characteristics from the seafloor to the deep layer of the Tofua Arc (TA) 12 seamount in the Tonga Arc, Southwestern Pacific, using bathymetric and geomagnetic data, and magnetization vector inversion (MVI) results. The seafloor features surrounding TA 12 highlight a NW-SE-oriented elliptical caldera at the summit of the seamount, two small cones in the depressed area. A large-scale sea valley is present on the western flank of the seamount, extending from these caldera cones to the southwestern base of the seamount. TA 12 seamount exhibits a low magnetic anomaly in the caldera depression, whereas a high magnetic anomaly is observed surrounding the low magnetic anomaly across the caldera summit. It is therefore presumed that there may be a strong magnetic material distribution or magma intrusion in the caldera. The 3D MVI results show that the high anomaly zones are mainly present in the surrounding slopes of the seamount from the seafloor to the -3,000 m (below the seafloor) level, with the magnetic susceptibility intensity increasing as the seafloor level increases at the caldera depression. However, small high anomaly zones are present across the study area near the seafloor level. Therefore, we expect that the magma ascent in TA 12 seamount migrated from the flanks to the depression area. Furthermore, we assume that the complex magnetic distribution near the seafloor is due to the remnant magnetization.

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

Structural Evolution of the Eastern Margin of Korea: Implications for the Opening of the East Sea (Japan Sea) (한국 동쪽 대륙주변부의 구조적 진화와 동해의 형성)

  • Kim Han-Joon;Jou Hyeong-Tae;Lee Gwang-Hoon;Yoo Hai-Soo;Park Gun-Tae
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.235-253
    • /
    • 2006
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the Korean margin leading to the separation of the Japan Arc. The Korean margin is rimmed by fundamental elements of rift architecture comprizing a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau, a continental fragment extended and partially segmented from the Korean Peninsula, that provided a relatively broader zone of extension resulting in a number of rifts. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau we bounded by major synthetic and smaller antithetic faults, creating wide and symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Rifting at the Korean margin was primarily controlled by normal faulting resulting from extension in the west and southeast directions orthogonal to the inferred line of breakup along the base of the slope rather than strike-slip deformation. Although rifting involved no significant volcanism, the inception of sea floor spreading documents a pronounced volcanic phase which seems to reflect slab-induced asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin can be explained by the processes occurring at the passive continental margin with magmatism intensified by asthenospheric upwelling in a back-arc setting.