• Title/Summary/Keyword: batch-type process

Search Result 210, Processing Time 0.026 seconds

Optimal Design Of Multisite Batch-Storage Network under Scenario Based Demand Uncertainty (다수의 공장을 포함하는 불확실한 수요예측하의 회분식 공정-저장조 망의 최적설계)

  • 이경범;이의수;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.537-544
    • /
    • 2004
  • An effective methodology is reported for determining the optimal lot size of batch processing and storage networks which include uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, infernally consumed, transported to or from other sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sires while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of the global supply chain.

A Study on the Separation of Activated Sludge by Dissolved Air Flotation (가압부상법(加壓浮上法)에 의한 활성(活性)슬러지 혼합액(混合液)의 고액분리(固液分離)에 관한 연구(研究))

  • Yang, Sang Hyun;Ra, Deog Gwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.21-29
    • /
    • 1985
  • An effective technique of sludge separation is required for concentrated activated sludge process. The dissolved-air flotation (DAF) has been shown to be efficient process for sludge separation. The factors affecting DAF process for activated sludge separation are type and concentration of sludge, air/solid ratio, ratio of pressurized water flow, pressure, sludge detention time, temperature, sludge and hydraulic loading rate, recycle flow rate of sludge and type and quantity of chemical aid. In order to study the optimal operation condition for sludge separation, the influence factors such as type and concentration of sludge, ratio of pressurized water flow and pressure are investigated by the batch and continuous reactor experiments of DAF and sedimentation test. By the experimental investigation, the results are as follows; 1. For the bulking and concentrated sludge, DAF is more effective than sedimentation for the sludge separation. 2. In DAF, the critical ratio of pressurized water flow exist. The critical value varies with the pressure in the tank. That is, according to the pressure changes from 3 to $5kg/cm^2$, the critical value varies from 0.25 to 0.67 accordingly. 3. Pressure affects the ratio of pressurized water flow, but it does not show any influence upon the DAF efficiency directly. 4. Continuous experimental results was not better than those of batch.

  • PDF

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.

Evaluation of Biological Kinetic Parameters in the Granular Sludge (입상슬러지의 동력학적 인자 산정)

  • 이재관;양병수
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

Optimization for SBR Process of Two-Sludge Type (Two-sludge 유형 SBR 공정의 최적 운영 조건 도출)

  • Ryu, Hong-Duck;Hwang, Jae-Sik;Kim, Keum-Yong;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.229-234
    • /
    • 2007
  • In the present work, the sequencing batch reactor process of two-sludge type was optimized. The effects of solid retention time, hydraulic retention time, length of biosorption phase and temperature variation were investigated, respectively. In the T-N removal, the long solid retention time was favored. It was speculated that SCOD biosorption efficiency was higher in long solid retention time than in short solid retention time. In the comparison of hydraulic retention time, the removal efficiency of $NH_4^+-N$ and T-N were almost same in all applied hydraulic retention times which were 8 hr, 10 hr and 15 hr. It was observed that there was no need to have the hydraulic retention time more than 20 min in biosorption phase for enhancement of T-N removal efficiency. An experimental comparison of removal efficiencies with different temperature conditions was carried out. Decrease of temperature didn't affect the performance of the process, however, phosphorus removal efficiency was a little higher at low temperature than high temperature. Consequently, the process developed in this study was much amenable to wastewater treatment which was conducted in the low temperature and high loading rate.

Energy Consumption Analysis of Batch Type Heating Process for Energy Savings in Food Processing Plants (식품가공공장의 에너지 절감을 위한 batch식 가열 공정 에너지 소비 분석 : 사례 연구)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Chae-Young Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.817-823
    • /
    • 2023
  • Manufacturing plants face the challenge of reducing energy use in response to climate change. Reducing energy consumption can be seen as one of the most important issues, such as reducing production costs and improving efficiency. Among manufacturing industries, the increase in energy consumption in the food industry is gradually increasing along with the improvement of the standard of living and the increase in population. In order to save energy in food processing plants, it is important to identify and analyze energy consumption characteristics in energy-consuming processes. Prior to this, it is necessary to monitor and analyze existing energy consumption to derive reduction measures. In this study, a small and medium-sized food processing plant producing processed meat products was used as a case study to identify and analyze the energy consumption structure at typical cycle/stage level of the batch heating process. From this, we tried to establish realistic and quantitative goals that can be obtained under individual process operating conditions. The results of this study will be used as basic data for the development of diffusion and pervasive energy saving FEMS technology for common core processes of food factories of small and medium-sized enterprises in the future.

Application of SUPAC-MR in Processing Postapproval Changes to Modified Release Sold Oral Dosage Forms (경구용 서방성/지연성 성형제품의 허가 후 변경사항 관리를 위한 SUPAC-MR 응용)

  • Sah, Hong-Kee;Cho, Mi-Hyun;Park, Sang-Ae;Yun, Mi-Ok;Kang, Shin-Jung
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.229-254
    • /
    • 2004
  • The objective of this study was to scrutinize the rationale of SUPAC-MR and its application in processing postapproval changes to modified release solid oral dosage forms. The types of postapproval changes that were primarily covered with SUPAC-MR included variations in the components and composition, the site of manufacturing, batch size, manufacturing equipment, and manufacturing process. SUPAC-MR defined levels of postapproval changes that the industry might make. Classification of such categories was based on the likelihood of risk occurrence and potential impact of changes upon the safety and efficacy of approved drug products. In most cases, the changes could be classified into 3 levels. It described what chemistry, manufacturing, and control tests should be conducted for each change level. The important tests specified in SUPAC-MR were batch release, stability, in vitro dissolution, and in vivo bioequivalence tests. It then suggested what type of a filing report should be submitted to the FDA for each change level. In general, level 1 changes could be reported in an annual report, whereas level 2 and/or 3 changes could be submitted in changes-being-effected or prior approval supplements. It could be understood that the purpose of SUPAC-MR was to maintain the safety and quality of approved modified release solid oral dosage forms undergoing certain changes. At the same time, it contributed to providing a less burdensome regulatory process with the manufacturers when they wanted to make postapproval changes. European regulatory agencies also implemented SUPAC-like regulations in handling such changes to drug products. Therefore, in this study a recommendation was made for KFDA and the Korean industry to evaluate thoroughly the usefulness of these guidances and regulations in dealing with postapproval changes to modified release solid oral dosage forms.

Cell Disruption of Dunaliella salina using Batch Low Frequency Non-Focused Ultrasound (비집속 회분저주파를 이용한 Dunaliella salina 세포 파쇄)

  • Choi, Jun-Hyuk;Kim, Gwang-Ho;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.63-71
    • /
    • 2021
  • Using fossil fuels in existing industrial systems causes a variety of social problems. Recently, many studies have been conducted on bio-refineries, which aim to actively utilize biomass to reduce the use of fossil fuels and solve various social problems. Among them, research using microalgae as a third-generation biomass has attracted considerable attention. Microalgae use inorganic matter to produce organic matter, and cell destruction is necessary to extract useful organic materials from microalgae. The extracted organic materials are currently used in various industrial fields. Numerous cell-destruction methods exist. We have investigated cell disruption by sonication, especially its efficiency. Ultrasound is a sound wave with frequencies above 20 kHz, and destroys cells by sending high energy through a cavitation that occurs, according to the characteristics of the sound wave. The Dunaliella salina microalgae used in this study was cultured in a flat-type photobioreactor. Experiments were performed using a batch low-frequency processing device. Logistic model was applied to analyze the results of cell-destruction experiments using ultrasound. The proper conditions for the most efficient cell destruction were OD 1.4(microalgae concentration)), 54watt(output power) and 200mL(microalgae capacity).

Basic Study for Development of Denitrogenation Process by ion Exchange(II) (이온교환법에 의한 탈질소 공정개발의 기초연구(II))

  • 이민규;주창식
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Ion exchange performance to remove nitrate in water was studied using commercially available strong base anion exchange resin of Cl- type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium conquilibrium between resin and solution. Anion exchange resin used in this study was more effective than activated carbon or zeolite for nitrate removal. With large resin amount or low initial concentration, nitrate removal characteristics for a typical gel-type resin was Increased. On considering the relation between the breakthrough capacity and nitrate concentration of the influent, the use of anion exchange resin were suitable for the hi선or order water treatment. The nitrate removal of above 90% could be possible until the effluent of above 650 BV was passed to the column. Thus, the commercially available strong base anion exchange resin of $Cl^-$ type used in thins study could be effectively used as economic material for treatment of the groundwater. The breakthrough curves showed the sequence of resin selectivity as $SO_4^{2-}$ > $NO_3$ > $NO^{2-}$ > $HCO_3^-$. The results of this study could be scaled up and used as a design tool for the water purification system of the real groundwater and surface water treatment processes.

  • PDF

Etching Method of Thin Film on the Backside of Wafer Using Single Wafer Processing Tool (매엽식 방법을 이용한 웨이퍼 후면의 박막 식각)

  • Ahn, Young-Ki;Kim, Hyun-Jong;Koo, Kyo-Woog;Cho, Jung-Keun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.47-49
    • /
    • 2006
  • Various methods of making thin film is being used in semiconductor manufacturing process. The most common method in this field includes CVD(Chemical Vapor Deposition) and PVD(Physical Vapor Deposition). Thin film is deposited on both the backside and the frontside of wafers. The thin film deposited on the backside has poor thickness profile, and can contaminate wafers in the following processes. If wafers with the thin film remaining on the backside are immersed in batch type process tank, the thin film fall apart from the backside and contaminate the nearest wafer. Thus, it is necessary to etch the backside of the wafer selectively without etching the frontside, and chemical injection nozzle positioned under the wafer can perform the backside etching. In this study, the backside chemical injection nozzle with optimized chemical injection profile is built for single wafer tool. The evaluation of this nozzle, performed on $Si_3N_4$ layer deposited on the backside of the wafer, shows the etching rate uniformity of less than 5% at the etching rate of more than $1000{\AA}$.

  • PDF