• 제목/요약/키워드: batch production

검색결과 1,148건 처리시간 0.026초

Zoogloea ramigera의 회분식, 유가배양, 연속배양에 의한 생물고분자 생산 (Biopolyrner Production of Zoogloea ramigera in Batch, Fed-Batch and Continuous Culture Processes)

  • 안대희;정윤철
    • 한국미생물·생명공학회지
    • /
    • 제20권2호
    • /
    • pp.196-202
    • /
    • 1992
  • Zooloea ramigera 115를 사용하여 생물응집제로서 사용되는 생물고분자생산 실험을 하였다. 생물고분자 생산을 높이기 위하여 회분식, 유가배양, 연속배양방법을 사용하였다. 탄소원으로는 포도당, 유당, 당밀, 유청을 사용하였다. 기질이 포도당의 경우에는 C/N배 98일 때 생물고분자 생산 효과가 좋았으며, 유당의 경우에는 C/N비 30, 당밀과 유청의 경우에는 C/N비 60일 때 생물고분자 생산이 가장 좋았다. 유가배양 방법이 회분식 배양방법 보다 최종 생물고분자 생산이 우수하였다. C/N비를 달리한 2단계 연속 배양방법으로 생산성을 향상시켰다. 당밀의 경우 0.048$hr^{-1}$의 희석속도에서, 유청의 경우 0.096$hr^{-1}$에서 생산성이 가장 좋았다.

  • PDF

여러 배양방법하에서 Acinetobacter calcoaceticus RAG-1에 의한 Emulsan의 생산 (Production of Emulsan by Acinetobacter calcoaceticus RAG-1 under Various Culture Modes)

  • 강병철;이필경장호남
    • KSBB Journal
    • /
    • 제6권4호
    • /
    • pp.389-394
    • /
    • 1991
  • Emulsan is an extracellular emulsifying agent produced by the hydrocarbon-degrading Acinetobacter species RAG-1. In this study emulsan production of Acinetobacter calcpaceticus RAG-1 was investigated under various culture modes such as batch, fed-batch, membrane cell recycle, and continuous culture. The productions of emulsan under both ethanol-sufficient fed-batch and membrane cell recycle cultures were all 15.0U/ml, which was 53% increase in emulsan activity compared to that of pH controlled batch culture. Emulsan production was found to be strongly dependent on the residual ethanol concentration. In continuous culture the emulsan productivity increased with dilution rate.

  • PDF

Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

  • Rashid, Harun Ar;Jung, Hyun Yi;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제21권10호
    • /
    • pp.33.1-33.11
    • /
    • 2018
  • As a process for commercial application, production of reducing sugar, antioxidant, and DNA protective compounds from shrimp-shell powder was investigated in a fed-batch biodegradation using Bacillus cereus EW5. The fed-batch biodegradation was operated in a 5-L bioreactor for 96 h according to three times pulse-feeding strategy. On the basis of the equal working volume (3 L), the fed-batch biodegradation showed a better production of the target compounds than the batch biodegradation, with higher cell density and shortened biodegradation period. The maximum values of the target compounds were 0.297 mg/mL of reducing sugar, 92.35% DPPH radical scavenging activity, 98.16% ABTS radical scavenging activity, and 1.55 reducing power at $A_{700}$, which were approximately 12.1, 3.4, 5.2, and 8.4% enhanced, respectively, compared with those obtained from the batch biodegradation. The fed-batch culture supernatant also showed the enhanced DNA damage inhibition activity than the batch culture supernatant. As a result, the fed-batch biodegradation accompanied by high cell density could produce more useful compounds, enabling an increase in the reutilization value of shrimp-shell waste.

Glucoamylase Production in Batch and Fed-Batch Solid State Fermentation: Effect of Maltose or Starch Addition

  • Bertolin, Telma Elita;Jorge Alberto Vieira Costa;Gean Delise Leal Pasquali
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.13-16
    • /
    • 2001
  • Maltose and soluble starch were used as secondary sources of carbon for glucoamylase production by Aspergillus awamori in solid state fermentation. During batch cultivation, maltose above 2.5%(w/w) repressed glucoamylase production, but, by adding either 2.5% (w/w) maltose or 1.25% (w/w) soluble starch to fed-batch cultivations, glucoamylase activity was increased by 15% and 170% over standard medium, respectively. The data showed that maltose is a weak inducer of glucoamylase production in solid stat fermentation.

  • PDF

Maximization of cell growth and polysaccharide production from Agaricus blazei by fed-batch cultivation

  • 황정민;서정식;권명상;최정우;한진수;홍억기
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.283-286
    • /
    • 2000
  • 본 연구에서는 fed-batch를 통하여 Agaricus blazei의 균체증식과 다당체 생산을 증가시키고자 공급배지와 배지공급속도에 변화를 주어 균체증식과 다당체 생성에 미치는 영향을 비교 ${\cdot}$ 검토하였다. 유가식 배양에서의 최종균체량 및 다당체 생성량은 회분식 배양에 비해 훨씬 높았으며, 초기에 균체증식을 위해 공급배지로 yeast extract를 먼저 공급하고 4일째부터 다당체 생성을 위해서 glucose를 공급할 경우 균체량은 18.2 g/L, 다당체 생성량은 10.4 g/L를 생산하여 배양결과 최대 생산량을 나타내었다.

  • PDF

Significantly Enhanced Production of Acarbose in Fed-Batch Fermentation with the Addition of S-Adenosylmethionine

  • Sun, Li-Hui;Li, Ming-Gang;Wang, Yuan-Shan;Zheng, Yu-Guo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.826-831
    • /
    • 2012
  • Acarbose, a pseudo-oligosaccharide, is widely used clinically in therapies for non-insulin-dependent diabetes. In the present study, S-adenosylmethionine (SAM) was added to selected media in order to investigate its effect on acarbose fermentation by Actinoplanes utahensis ZJB-08196. Acarbose titer was seen to increase markedly when concentrations of SAM were added over a period of time. The effects of glucose and maltose on the production of acarbose were investigated in both batch and fed-batch fermentation. Optimal acarbose production was observed at relatively low glucose levels and high maltose levels. Based on these results, a further fed-batch experiment was designed so as to enhance the production of acarbose. Fed-batch fermentation was carried out at an initial glucose level of 10 g/l and an initial maltose level of 60 g/l. Then, 12 h post inoculation, 100 ${\mu}mol/l$ SAM was added. In addition, 8 g/l of glucose was added every 24 h, and 20 g/l of maltose was added at 96 h. By way of this novel feeding strategy, the maximum titer of acarbose achieved was 6,113 mg/l at 192 h. To our knowledge, the production level of acarbose achieved in this study is the highest ever reported.

Flavonoid 배당체 생산을 위한 Scutellaria baicalensis G. 식물 세포 배양에서 생물반응기 운전전략 (Bioreactor Operating Strategy in Scultellaria baicalensis G. Plant Cell Culture for the Production of Flavone Glycosides)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.259-267
    • /
    • 1998
  • Optimal feeding strategies in bioreactor operation of Scutellaria baicalensis G. plant cell culture were investigated to maximize the production of flavone glycosides by using a structured kinetic model which can predict culture growth and flavone glycosides synthesis in a rigorous, quantitative manner. For the production of baicalin and wogonin-7-0-GA, the strategies for glucose feeding into Scutellaria baicalensis G. plant cell culture were proposed based on the model, which are a periodic fed-batch operation with maintenance of cell viability and of specific production rate respectively, and a perfusion operation with maintenance of specific production rate for baicalin and wogonin-7-0-GA. Simulation results showed that the highest volumetric concentration of flavone glycosides was obtained in a periodic fed-batch operation with maintenance of cell viability among all the suggested strategies. In the periodic fed-batch operations, the higher volumetric production of flavone glycosides was achieved compared with that in the perfusion operation. It can be concluded that a periodic fed-batch operation with maintenance of cell viability would be the optimal and practical operating strategy of Scutellaris baicalensis G. plant cell culture for the production of flavone glycosides.

  • PDF

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF

생산라인의 병목공정에서 배치크기 결정 모형 (A Batch Sizing Model at a Bottleneck Machine in Production Systems)

  • 구평회;고시근
    • 대한산업공학회지
    • /
    • 제33권2호
    • /
    • pp.246-253
    • /
    • 2007
  • All of the machines in a production line can be classified into bottleneck and non-bottleneck machines. A bottleneck is a resource whose capacity limits the throughput of the whole production facility. This paper addresses a batch sizing problem at the bottleneck machine. Traditionally, most batch sizing decisions have been made based on the EOQ (economic order quantity) model where setup and inventory costs are considered while throughput rate is assumed to be given. However, since batch size affects the capacity of the bottleneck machine, the throughput rate may not be constant. As the batch size increases, the frequency of the setup decreases. The saved setup time can be transferred to processing time, which results in higher throughput. But, the larger batch size may also result in longer lead time and larger WIP inventory level. This paper presents an alternative method to determine batch size at the bottleneck machine in a manufacturing line. A linear search algorithm is introduced to find optimal throughput rate and batch size at the same time. Numerical examples are provided to see how the proposed method works and to investigate the effects of some parameters.

Near optimal production scheduling for multi-unit batch process

  • Kim, Kyeong-Sook;Cho, Young-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1718-1723
    • /
    • 1991
  • The determination of a production sequence is an important problem in a batch process operation. In this paper a new algorithm for a near optimal production sequence of N product in an M unit serial multiproduct batch process is proposed. The basic principle is the same as that of Johnson's algorithm for two-unit UIS system. Test results on a number of selected examples exhibit the superiority over previously reported results. In addition, a tabulation technique is presented to calculate the makespan of a given sequence of production for all processing units under UIS mode.

  • PDF