• Title/Summary/Keyword: batch process

Search Result 1,273, Processing Time 0.037 seconds

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF

Batch Sizing Heuristic for Batch Processing Workstations in Semiconductor Manufacturing (반도체 생산 배취공정에서의 배취 크기의 결정)

  • Chun, Kil-Woong;Hong, Yu-Shin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-245
    • /
    • 1996
  • Semiconductor manufacturing line includes several batch processes which are to be controlled effectively to enhance the productivity of the line. The key problem in batch processes is a dynamic batch sizing problem which determines number of lots processed simultaneously in a single botch. The batch sizing problem in semiconductor manufacturing has to consider delay of lots, setup cost of the process, machine utilization and so on. However, an optimal solution cannot be attainable due to dynamic arrival pattern of lots, and difficulties in forecasting future arrival times of lots of the process. This paper proposes an efficient batch sizing heuristic, which considers delay cost, setup cost, and effect of the forecast errors in determining the botch size dynamically. Extensive numerical experiments through simulation are carried out to investigate the effectiveness of the proposed heuristic in four key performance criteria: average delay, variance of delay, overage lot size and total cost. The results show that the proposed heuristic works effectively and efficiently.

  • PDF

A Study on UBM Method Detecting Mean Shift in Autocorrelated Process Control

  • Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.187-194
    • /
    • 2020
  • In today's process-oriented industries, such as semiconductor and petrochemical processes, autocorrelation exists between observed data. As a management method for the process where autocorrelation exists, a method of using the observations is to construct a batch so that the batch mean approaches to independence, or to apply the EWMA (Exponentially Weighted Moving Average) statistic of the observed value to the EWMA control chart. In this paper, we propose a method to determine the batch size of UBM (Unweighted Batch Mean), which is commonly used as a management method for observations, and a method to determine the optimal batch size based on ARL (Average Run Length) We propose a method to estimate the standard deviation of the process. We propose an improved control chart for processes in which autocorrelation exists.

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Joint Batch Production and Inventory Rationing Control in a Two-Station Serial Production System (두 단계 일렬 생산 시스템에서 뱃치 생산과 재고 배급 전략의 통합 구현)

  • Kim, Eun-Gab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.89-97
    • /
    • 2012
  • This paper considers a manufacturer with a two-station make-to-stock and make-to-order serial production system. The MTS facility produces a single type of component and provides components for the MTO facility that produces customized products. In addition to the internal demand from the MTO facility, the MTS facility faces demands from the spot market with the option of to accept or reject each incoming demand. This paper addresses a joint component inventory rationing and batch production control which maximizes the manufacturer's profit. Using the Markov decision process model, we investigate the structural properties of the optimal inventory rationing and batch production policy, and present two types of heuristics. We implement a numerical experiment to compare the performance of the optimal and heuristic policies and a simulation study to examine the impact of the stochastic process variability on the inventory rationing and batch production control.

전처리 공정에 따른 폐 신문지의 효소 가수분해 특성

  • Mun, Nam-Gyu;Lee, Jae-Hwan;Kim, Seong-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.459-462
    • /
    • 2000
  • The pretreatment of used newspaper for the enzymatic digestion preprocess was performed on a percolation reactor and a batch reactor. The test condition of percolation process was $170^{circ}C$, 60min, 1 mL/min, and 400psi, that of batch was $40^{circ}C$, 3hr. and latm Reaction solutions used in pretreatment process were aqueous ammonia, sulfuric acid, water, and hydrogen-peroxide as an oxidizing agent. As a result, the effect of pretreatment was similar to batch and percolation process, but the yield of enzymatic hydrolysis was higher in batch than percolation. This batch pretreatment enhanced enzymatic hydrolysis rate and increased glucose yield from about 15 to 20%. The inhibition factors influenced the rate of enzymatic hydrolysis was investigated, and the ink contented newspaper was the major factor.

  • PDF

Development of Expert System for Automating HAZOP Analysis of Batch Process (회분식 공정의 HAZOP 분석 자동화를 위한 전문가 시스템 개발)

  • Hou Bo Kyeng;Hwang Kyu Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Expert system for automating HAZOP analysis of batch processes In contrast with continuous processes must consider the discrete variables such as time and sequence. So in this study, we have developed the expert system for automating HAZOP analysis of batch processes to analyse time and sequence on the basis of the relation between discrete variables and continuous ones. Because these variables can not be explained by the method used in the HAZOP analysis of continuous processes. The proposed expert system have been discussed on a Latex batch process to evaluate its effectiveness.

  • PDF

Fed-Batch Sorbose Fermentation Using Pulse and Multiple Feeding Strategies for Productivity Improvement

  • Giridhar, R.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.340-344
    • /
    • 2000
  • Microbial oxidation of D-sorbitol to L-sorbose by Acetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding, highly concentrated sorbitor (600g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24h with a sorbose productivity of 13.40g/L/h and a final sorbose concentration of 320.48g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600g/L sorbitol at a constant feed rate of 0.36L/h till the full working capacity of the reactor. The fermentation was completed in 24h with an enhanced sorbose productivity of 15.09g/L/h and a sorbose concentration of 332.60g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.

  • PDF

A Study on the Treatment Efficiency of Sequencing Batch Reactor with the Livestock Nightsoil Organic Loading Rate Variance (가축분뇨 유기물질부가별 연속회분식반응조 효율에 관한 연구)

  • 여운호
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.32-36
    • /
    • 1995
  • This study was carried out to investigate the treatment efficiency of sequencing batch reactor when the livestock nightsoil organic loading rate was varied. Sequencing batch reactor was operated with the variance of influent BOD concentration and operating cycle. The average influent BOD concentrations in this study were 150 mg/l, 200 mg/l, 250 mg/l, 300 mg/l, 350 mg/l, 400 mg/l, 450 mg/l and 500 mg/l in the condition of 1~3 cycles/day. The treatment efficiency of sequencing batch reactor is good at the volumetric loading of 0.05~0.20 kg $BOD/m^3\cdot day$. Therefore, sequencing batch reactor process would become an effective alternative for the process of small scale livestock nightsoil treatment plants.

  • PDF