• 제목/요약/키워드: batch culture

Search Result 722, Processing Time 0.027 seconds

Studies of Cyclosporin A Biosynthesis under the Conditions of Limited Dissolved Oxygen or Carbon Source in Fed-batch Culture (용존산소 제한 또는 탄소원 제한 조건의 유가식배양에서의 Cyclosporin A 생합성 연구)

  • 전계택;박성관;권호균;정연호;정용섭;장용근;이영행
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • We investigated the effects of dissolved oxygen (D.O.) and fructose (C-source) on cell growth and biosynthesis of cyclosporin A (CyA) produced as a secondary metabolite by a wild-type filamentous fungus, Tolypocladium inflatum. This was performed by controlling the level of D.O. and the residual C-source, as required, through adjustment of medium flow rate, medium concentration and agitation rate in fed-batch cultures. CyA production was furned out to be maximal, when D.O. level was controlled around 10% saturated D.O. and concentration of the C-source was maintained sufficiently low (below 2 g/L) not to cause carbon catabolite repression. Under this culture condition, we obtained the highest values of CyA concentration (507.14 mg/L), Qp (2.11 mg CyA/L/hr), $Y_x/s$ (0.49 g DCW/g fructose), $Y_p/s$<(22.56 mg CyA/g fructose), and YTEX>$_p/x$ (48.31 mg CyA/g DCW), but relatively lower values of cell concentration (11.98 g DCW/L) and cell productivity (0.043 g DCW/L/hr), in comparison with other parallel fed-batch fermentation conditions. These results implied that, in the carbon-limited culture with 10% saturated D.O. level, the producer microorganism utilized the C-source more efficiently for secondary metabolism.

  • PDF

Ethanol Fermentation of Corn Starch by a Recombinant Saccharomyces cerevisiae Having Glucoamylase and $\alpha$-Amylase Activities

  • Lee, Dae-Hee;Park, Jong-Soo;Ha, Jung-Uk;Lee, Seung-Cheol;Hwang, Yong-Il
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2001
  • Starch is an abundant resource in plant biomass, and it should be hydrolyzed enzymatically into fermentable sugars for ethanol fermentation. A genetic recombinant yeast, Saccharomyces cerevisiae GA-7458, was constructed by integrating the structural gene of both $\alpha$-amylase from Bacillus stearothermophilus and the gene (STA1) encoding glucoamylase from S. diastaticus into the chromosome of S. cerevisiae SH7458. The recombinant yeast showed active enzymatic activities of $\alpha$-amylase and glucoamylase. The productivity of ethanol fermentation from the pH-controlled batch culture (pH 5.5) was 2.6 times greater than that of the pH-uncontrolled batch culture. Moreover, in a fed-batch culture, more ethanol was produced (13.2 g/L), and the production yield was 0.38 with 2% of corn starch. Importantly, the integrated plasmids were fully maintained during ethanol fermentation.

  • PDF

High Concentrated Spore Production of Bacillus thuringliensis by Fed-Batch Processes (유가식 배양공정에 의한 Bacillus thurngiensis의 고농도 포자생산)

  • 박창열;유연우
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • Both the production of high spore concentration and high insecticidal activity are required in the production of Bacillus thuringiensis to be used for the bacterial insecticide. In the production of high cell and spore concentrations of B. thuringiensis the continuous fed-batch culture(CFBC) and intermittent fed-batch culture(IFBC) were investigated at $28^{\circ}C$ by maintaining 40% dissolved oxygen concentration. When the final glucose concentration was 50 g/L the maximum viable cell number obtained using the CFBC with linear gradient feeding was $9.37{\times}109$ cells/mL and maximum spore concentration was $8.33{\times}109$ spores/mL which was approximately 84.4% yield of spore formation. When the final glucose concentration was 100 g/L the aximum viable cell and spore concentrations obtained using the IFBC with pH-statb were $1.38{\times}$1010 cells/mL and $1.35{\times}1010$ spores/mL respectively and the yield of spore formation was approximately 97.8%.

  • PDF

Production of Mycelia and Water Soluble Polysaccharides from Submerged Culture of Lentinus lepideus in Bioreactor (생물반응기를 이용한 잣버섯(Lentinus lepideus)의 균사체 및 수용성 다당체 생산특성)

  • Ahn, Jin-Kwon;Ka, Kang-Hyeon;Lee, Wi-Young
    • The Korean Journal of Mycology
    • /
    • v.35 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • The mushroom Lentinus lepideus was used to produce mycelial as well as soluble polysaccharides in bioreactor cultures. To determine optimal submerged culture conditions, both growth characteristics and water soluble polysaccharides production were compared among four different types of bioreactor and culture conditions. For the production of mycelial biomass, the following bioreactors were proven to be effective in decreasing order: an external-loop type air-lift bioreactor (ETAB; 7g/l), a balloon type air bubble bioreactor (BTBB; 6.2g/l), a stirrer type bioreactor (STB; 6g/l), and a column type air bubble bioreactor (CTBB; 5g/l). Maxiaml production of water soluble exopolysaccharides (EPS; 0.62g/l) and endopolysaccharides (PPS; 7.7%) could also be obtained from BTBB. The mycelial biomass increased with increase in glucose concentration from 15g/l to 75g/l in the media. In contrast, PPS contents in the cells decreased with increase in glucose concentration in the media, showing the highest PPS content (7%) at 15g/l. Among different medium feeding types, fed-batch culture based on concentration control in media (10g/l) produced higher mycelia than fed-batch culture based on volume control of media (5.8g/l) or batch culture (3.4g/l). EPS production was also higher in fed-batch culture based on medium concentration control than that in other feeding types.

미생물을 이용한 아라키돈산의 생산기술 개발

  • Park, Chang-Yeol;Hwang, Byeong-Hui;Yu, Yeon-U;Park, Jang-Seo
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.91-94
    • /
    • 2002
  • Arachidonic acid is a polyunsaturated fatty acid(PUFA) containing twenty carbon atoms with four double bonds. The family of w-6 PUFA, including arachidonic acid as well as r-linoleic acid, was served as intermediates in the formation of several key prostaglandin and leukotrienes. Several fungal strains of the genus Mortierella accumulate high amounts of arachidonic acid. In this study experiments were carried out to optimize the culture conditions for the mass production of fungus Mortierella alpina DSA -12 and lipid production with high proportion of polyunsaturated fatty acids, especially arachidonic acid. The batch culture was carried out in 500 L fermenter containing 50 g/L glucose, 18 g/L corn-steep powder and 100 mg/L MnS04 under $25^{\circ}C$, aeration rate of 0.5 vvm and agitation speed of 200 rpm without pH control. As a result, we could be obtained 22 g/L of cell mass with high contents of lipid 12.1 g/L) and arachidonic acid (5.1 g/L) The intermittent fed-batch culture was performed in the medium containing 20 g/L glucose and 10 g/L corn-steep powder. The final glucose concentration was 170 g/L and pH was maintained at 5.5 ${\sim}$ 6.0 by adding 14% ammonia solution. It was shown relatively high cell concentration (70.5 g/L) with high contents of lipid (45.8 g/L) and arachidonic acid 08.3 g/L). Therefore, when compared to batch cultures, the high concentration of arachidonic acid could be obtained by fed-batch culture using M. alpina DSA -12. These results imply that the fed-batch culture of M. alpina DSA -12 was feasible in industrial purpose and could be employed in the commercial production of arachidonic acid.

  • PDF

High Production of L-Threonine using Controlled Feeding of L-Methionine and Phosphate by Escherichia coli Mutant (L-Methionine과 Phosphate의 제한 공급에 의한 Escherichia coli MT201로부터의 고농도 L-Threonine 생산)

  • 이만효;이홍원;김병진;김천석;정준기;황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.149-153
    • /
    • 2004
  • L-Threonine fermentation process was constructed on batch and fed-batch culture by using Escherichia coli MT201. The production type of L-threonine was observed as growth-associated production in batch culture. In fed-batch culture studying optimal concentration of yeast extract in feeding media, when 600 g/l of glucose and 60 g/l of yeast extract were added in feeding media, 87 g/$\ell$ of L-threonine was produced. To improve cell growth and L-threonine production, the culture of high cell density was performed in fed-batch culture with oxygen enriched air and feeding media containing L-methionine and phosphate. Under the conditions, we could achieve the highest L-threonine production of98 g/$\ell$ at 60 h. The highest productivity of L-threonine was about 3.85 g/$\ell$/h.

Two-Stage Fed-Batch Culture of Candida magnoliae for the Production of Erythritol using an Industrial Medium (산업용 배지를 이용한 Candida magnoliae의 2단계 유가식 배양에서 에리스리톨의 생산)

  • 박선영;서진호;유연우
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 2003
  • Experiments were carried out to select an industrial nitrogen source and optimize erythritol production by Candida magnoliae in fed-batch culture. Among the industrial nitrogen sources tested, light steep water (LSW) was found to be the best nitrogen source for producing erythritol, based on erythritol yield and raw material price. The maximum erythritol concentration obtained a 131.6 g/L, with a 52.6% yield and 0.52 g/L-hr productivity from a 250 g/L glucose and 43.3 mL/L LSW in batch culture. Two-stage fed-batch culture was chosen to improve the volumetric productivity and the yield of erythritol. High cell density culture in cell growth stage was achieved by batch type culture containing 100 g/L glucose and 500 mL/L LSW. The cell concentration was 71.0 g/L after 23 hours of culture. Erythritol productivity was decreased by increasing glucose concentration in the production stage. But 37.3% of the maximum erythritol yield was obtained with 185.5 g/L of erythritol and 1.66 g/L-hr of productivity when 820 g of glucose powder was directly added to a concentration of 450 g/L glucose in production stage.

Fed-Batch Fermentation of High-Content RNA Yeast by Using Molasses Medium. (당밀 배지를 이용한 고함량 RNA효모의 유가배양)

  • 김재범;권미정;남희섭;김재훈;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.234-239
    • /
    • 2001
  • In order to maximize the RNA accumulation and biomass production is Saccharomyces cerevisiae MTY62, a high-content RNA yeast strain, batch and fed-batch cultures were performed. Among the feeding modes of fed-batch cultures examined, the intermittent feeding mode R\`(IFB-lV), in which 50 ml of 40% molasses and 20% com steep liquor (CSL) solution was intermittently fed for 5 times, resulted in the cell concentration of 33.8 g- dry cell weight/1 and the RNA concentration of 5221 mg-/l, and RNA content of 153 mg-RNA/g-dry cell weight. The constant fed-batch with feeding mode III (CFB-III), in which the feeding rate of 40% molasses and 20% CSL solution was stepwisely decreased from 48 mph (9-13 h), to 24 mph (13-21 h), and to 18 ml/h (21∼ 48 h), gave the highest cell concentration of 42.7 g-dry ceil weigh71 and R7IA concentration of 5536 mg-RNA/1, which were about 2.4-fold and 1.9-fold increased levels, respectively, compared to the results of batch culture. However, the RNA con- tent of 130 mg-RNA/g-dry cell weight of the fed-batch was lower than that of the batch culture (171 mg-RNA/g-dry cell weight) and other fed-batch cultures. When the specific growth rates in the fed-batch cultures were increased, the RNA contents increased. This result indicates that the RNA content is adversely proportional to the cell concen- tration. However, at the same specific growth rate, the RNA content was maintained at higher level in the intermit- tent fed-batch than in the constant fed-batch culture.

  • PDF

Selection of Yeast Mutant Strain with High RNA Content and Its High Cell-Density Fed-Batch Culture. (고함량 RNA 효모 변이주의 선별 및 고농도세포 유가배양)

  • 김재범;권미정;남희섭;김재훈;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • To obtain a yeast mutant with high RNA content and high growth rate, Saccharomyces cerevisiae MTY62 was mutated with ethylmethane sulfonate. Among the selected mutants that were sensitive to the high concentration of KCl, M40-10 strain was finally selected due to its rapid cell growth and high RNA content in the tube and baffled-flask cultures. In the batch culture of M40-10 mutant, the maximum specific growth rate ($\mu_{max}$) of $0.38 h^{-1}$ , RNA concentration of 3210 mg-RNA/1, and RNA content of 183 mg-RNA/g-DCW were obtained, which were 23%, 15%, and 12% increased levels, respectively, compared to those of MTY62 parent strain. The intermittent fed-batch culture of M40-10 strain resulted in the maximum cell concentration of 35.6 g-DCW/1, RNA concentration of 5677 mg/1, and RNA content of 160 mg-RNA/g-DCW. Through the constant fed-batch culture, the maximum cell concentration of 46.4 g-DCW/1, RNA concentration of 6270 mg-RNA/1, and RNA content of 135 mg-RNA/g-DCW were obtained. At the 20 h culture time in the fed-batch cultures of M40-10 strain, the cell and RNA concentrations were increased by 30% and 10%, respectively, over the parent strain MTY62. In addition, it was also found that the accumulated RNA within the mutant cell was not degraded until the end of fed-batch cultivation, indicating that the M40-10 cell is a mutant with weak acidic RNase activity.y.

Growth and Astaxanthin Production of Phaffia rhodozyma AJ-6 by Fed-batch Culture

  • Kim, Su-Jin;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.301-304
    • /
    • 2000
  • Fed-batch culture was designed to increase cell concentration and astaxanthin content by mutant AJ-6 of Phaffia rhodozyma. Fed-batch culture was performed in the continuous feeding with manual adjustment of flow rate to control glucose concentration. When the final glucose concentration was 100 g/L, the cell and astaxanthin were 38.3 g/L, 34.8 mg/L, respectively. Addition of ethanol(10 g/L), when glucose was depleted, the cell and astaxanthin concentration were 37.2 g/L and 45.6, respectively, 5 g/L of acetic acid supplied, 40.6 g/L, 43.9 mg/L were obtained. Ethanol and acetic acid enhanced the astaxanthin content act as precursor of carotenoid synthesis.

  • PDF