• Title/Summary/Keyword: batch 흡착 실험

Search Result 210, Processing Time 0.029 seconds

Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon (입상 활성탄에 의한 Murexide의 흡착 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • The equilibrium, kinetic and thermodynamic parameters of adsorption of murexide by granular activated carbon were investigated. The experiment was carried out by batch experiment with the variables of the amount of the adsorbent, the initial concentration of the dye, the contact time and the temperature. The isothermal adsorption equilibrium was best applied to the Freundlich equation in the range of 293 ~ 313 K. From the separation factor (${\beta}$) of Freundlich equation, it was found that adsorption of murexide by granular activated carbon could be the appropriate treatment method. The adsorption energy (E) obtained from the Dubinin- Radushkevich equation shows that the adsorption process is a physical adsorption process. From the kinetic analysis of the adsorption process, pseudo second order model is more consistent than pseudo first order model. It was found that the adsorption process proceeded to a spontaneous process and an endothermic process through Gibbs free energy change ($-0.1096{\sim}-10.5348kJ\;mol^{-1}$) and enthalpy change ($+151.29kJ\;mol^{-1}$). In addition, since the Gibbs free energy change decreased with increasing temperature, adsorption reaction of murexide by granular activated carbon increased spontaneously with increasing temperature. The entropy change ($147.62J\;mol^{-1}\;K^{-1}$) represented the increasing of randomness at the solid-solution interface during the adsorption reaction of murexide by activated carbon.

Adsorption Removal of Eosin Y by Granular Activated Carbon (입자상 활성탄에 의한 Eosin Y의 홉착제거)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2010
  • Eosin Y is used a colorant and dye but eosin Y is harmful toxic substance. In this study, the adsorption characteristics of granular activated carbon have been investigated for the adsorption of eosin dye dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of eosin by a fixed amount of activated carbon have been studied in batch adsorber and fixed bed. The adsorptivity of activated carbon for eosin Y were largely improved by pH control. When the pH was 3 in the sample, the eosin Y could be removed 99% of initial concentration (10 mg/L). The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 293 to 333 K. The estimated values of k and ${\beta}$ are 19.56-134.62, 0.442-0.678, respectively. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet eosin Y concentration is increased from 10 to 30 mg/L, the corresponding adsorption breaktime appears to decrease from 470 to 268 min at bed height of 3 cm and a constant flow rate of 2 g/min. When the initial eosin Y flow rate is increased from 1 to 3 g/min, the corresponding adsorption breaktime appears to decrease from 272 to 140 min at bed height of 3 cm and inlet concentration of 10 mg/L. Also, breaktime increased with increasing bed height at flow rate of 2 g/min and inlet concentration of 10 mg/L. And length of adsorption zone showed similar patterns.

Phosphate removal by the continuous flow pilot plant with converter slag (연속흐름 모형실험장치를 이용한 전로슬래그에 의한 인산염 제거)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.453-459
    • /
    • 2014
  • The excessive concentration of phosphorus in the river and reservoir is a deteriorating factor for the eutrophication. The converter slag was used to remove the phosphate from the synthetic wastewater. Influencing factors were studied to remove soluble orthophosphate with the different particle sizes through the batch and the column experiments by continuous flow. Freundlich and Langmuir adsorption isotherm constants were obtained from batch experiments with $PS_A$ and $PS_B$. Freundlich isotherm was fitted better than Langmuir isotherm. Regression coefficient of Freundlich isotherm was 0.95 for $PS_A$ and 0.92 for $PS_B$, respectively. The adsorption kinetics from the batch experiment were revealed that bigger size of convert slag, $PS_A$ can be applied for the higher than 3.5 mg/L of phosphate concentration. The pilot plant of continuous flow was applied in order to evaluate the pH variation, breakthrough points and breakthrough adsorption capacity of phosphate. The variation of pH was decreased through the experimental hours. The breakthrough time was 1,432 and 312 hours to 10 mg/L and 50 mg/L for the influent concentration, respectively. The breakthrough adsorption capacity was 3.54 g/kg for 10 mg/L, and 1.72 g/kg for 50 mg/L as influent phosphate concentration.

감압증류법에 의한 $^{32}$P 제조

  • 한현수;김재록;박춘득;윤병목;조운갑;박울재
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.565-570
    • /
    • 1996
  • $^{32}$P는 순수한 $\beta$$^{-}$ 방출핵종(방출에너지 = 1.71 MeV, 반감기 = 14.3일)이며 의료용, 표지화합물 합성용, 유전공학 실험용 등으로 널리 사용되므로 고품질의 $^{32}$P의 수요에 부응하기 위해 감압증류법을 개발하였는 바 그 방법과 결과는 다음과 같다. 연구로 2호에서 중성자 조사된 황 표적을 감압 증류용기내에서 5~10 mmHg의 감압하에 200~30$0^{\circ}C$로 가열하여 황을 증류해 낸 다음 묽은 염산을 역류시켜 넣고 $^{32}$P 를 울궈냈다. 이 용액을 이온교환 수지로 정제하여 약 60 mCi/batch의 정제 $^{32}$P를 얻었다. 이온교환수지에 흡착되는 $^{32}$P의 방사능은 전체의 3% 미만이었고 여기에 흡착되는 불순 핵종은 $^{131}$ Ba, $^{85}$ Sr, $^{59}$ Fe, $^{65}$ Zn, $^{60}$Co이었다. 이 방법으로 얻은 $^{32}$P 최종제품은 핵종순도 >99%, 방사화학적 순도 >98%, 고형성분 함량 <1.2 mg/mL 이어서 그 품질이 우수함을 알 수 있었다.

  • PDF

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Development of Selective Adsorption Process with Various Pore Size A-type Zeolite on Removal of Acetylenes for Isoprene Purification (제올라이트 A를 이용하여 이소프렌에서 아세틸렌 제거를 위한 선택적 흡착공정 개발)

  • Jun, Kyung-Jin;Ahn, Byoung-Sung;Yoo, Kye-Sang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.548-552
    • /
    • 2010
  • This study focused on the development of effective adsorbent to remove acetylenes for the purification of isoprene. The adsorbents with various pore sizes from $4{\AA}$ to $5{\AA}$ were prepared to investigate the effect of pore size on selective adsorption of acetylene as an impurity. The pore size of zeolite A was adjusted by ion-exchange between Na and Ca ions. The pore size of adsorbents has affected the removal of acetylenes selectively because of the kinetic diameter of acetylenes, such as 2-methyl-1-butyne-3-yen (IPA) and 2-butyne. In a batch adsorption experiment, 5A zeolite with pore size of $5{\AA}$ showed the highest removal capacity of 2-butyne. However, IPA was hardly removed from isoprene by the A-type zeolites. For the adsorption isotherm, modified Langmuir model was well fitted with 2-butyne adsorption. Moreover, the regeneration of adsorbent was carried out to determine optimum method. The adsorbent heated for 12 h at $300^{\circ}C$ was regenerated significantly.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon (입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.