• Title/Summary/Keyword: batch

Search Result 4,251, Processing Time 0.029 seconds

Growth of Issatchenkia orientalis in Aerobic Batch and Fed-batch Cultures

  • Shin, Hyung-Tai;Lim, Yoo-Beom;Koh, Jong-Ho;Kim, Jong-Yun;Baig, Soon-Yong;Lee, Jae-Heung
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.82-85
    • /
    • 2002
  • The aerobic batch growth of Issatchenkia orientalis DY252 with glucose and fructose medium was investigated at 32$\^{C}$ and pH 5.0. Aerobic ethanol production was evident with yeast I, orientalis. A diauxic lag of about 1 h between growth on glucose and growth on ethanol during batch culture was observed. However, no diauxic growth occurred with fructose. As the incubation temperature was increased from 32 to 39$\^{C}$, viability at the end of each batch culture declined significantly, from 93 to 43%, Unlike the effect of temperature, viability was not greatly affected by incubation pH, and cell yield values in a range of 0.45-0.48 were obtained. In order to overcome overflow metabolism, a fedbatch culture under glucose limitation was carried out. Compared with aerobic batch culture, about 10% improvement in cell yield was achieved with a fed-batch culture in optimal conditions.

Effects of arsenite and variation of microbial community on continuous bio-hydrogen production from molasses using a sequence batch reactor (SBR)

  • William, Dennis Sambai;Lee, Pul-eip;Lee, Tae-jin
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.370-376
    • /
    • 2015
  • This study investigated the effects of various arsenite concentrations on bio-hydrogen production from molasses using a sequence batch reactor (SBR) operated in a series of three batch cycles. In the first batch cycle, hydrogen production was stimulated at arsenite concentrations lower than 2.0 mg/L, while inhibition occurred at arsenite concentration higher than 2.0 mg/L compared to the control. Hydrogen production decreased substantially during the second batch cycle, while no hydrogen was produced during the third batch cycle at all tested concentrations. The toxic density increased with respect to the increase in arsenite concentrations (6.0 > 1.6 > 1.0 > 0.5 mg/L) and operation cycles (third cycle > second cycle > first cycle). The presence of microorganisms such as Clostridium sp. MSTE9, Uncultured Dysgonomonas sp. clone MEC-4, Pseudomonas parafulva FS04, and Uncultured bacterium clone 584CL3e9 resulted in active stimulation of hydrogen production, however, it was unlikely that Enterobacter sp. sed221 was not related to hydrogen production. The tolerance of arsenite in hydrogen producing microorganisms decreased with the increase in induction time, which resulted in severing the inhibition of continuous hydrogen production.

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

  • Muthuvelu, Nithiapidary;Chai, Ian;Chikkannan, Eswaran;Buyya, Rajkumar
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.299-320
    • /
    • 2011
  • The overhead of processing fine-grain tasks on a grid induces the need for batch processing or task group deployment in order to minimise overall application turnaround time. When deciding the granularity of a batch, the processing requirements of each task should be considered as well as the utilisation constraints of the interconnecting network and the designated resources. However, the dynamic nature of a grid requires the batch size to be adaptable to the latest grid status. In this paper, we describe the policies and the specific techniques involved in the batch resizing process. We explain the nuts and bolts of these techniques in order to maximise the resulting benefits of batch processing. We conduct experiments to determine the nature of the policies and techniques in response to a real grid environment. The techniques are further investigated to highlight the important parameters for obtaining the appropriate task granularity for a grid resource.

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF

Robust tuning of quadratic criterion-based iterative learning control for linear batch system

  • Kim, Won-Cheol;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.303-306
    • /
    • 1996
  • We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algorithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch systems. Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to optimize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.

  • PDF

Production of Lactococcal Bacteriocin using Repeated-Batch and Continuous Cultures

  • Yoo, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.284-287
    • /
    • 1992
  • Repeated-batch and continuous cultures of Lactococcus sp. 1112-1 were carried out for bacteriocin production using a glucose-casein medium. Repeated-batch culture did not efficiently enhanced the bacteriocin production. Continuous production was possible at the dilution rate of 0.4 $h^{-1}$. Maximum specific production rate ($Q^p$), bacteriocin production and biomass at the dilution rate were 347, 136 IU/g/h, 2, 121 IU/ml and 2.45 g/L, respectively.

  • PDF

Control of a batch reactor using iterative learning (반복학습을 이용한 회분식 반응기의 제어)

  • 조문기;방성호;조진원;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.81-86
    • /
    • 1991
  • The iterative learning operation has been utilized in the temperature Control of a batch reactor. A generic form of feedback-assisted first-order learning control scheme was constructed and then various design and operation modes were derived through convergence and robustness analysis in the frequency domain. The proposed learning control scheme was then implemented on a bench scale batch reactor with the heat of reaction simulated by an electric heater. The results show a great improvement in the performance of control as the number of batch operations progressed.

  • PDF

Development and application of a batch reaction calorimeter (회분식 반응열 분석 시스템의 개발과 응용)

  • 이기형;이대욱;정상태;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.947-952
    • /
    • 1992
  • A batch reaction calorimeter is the device for estimating reaction heat along time. Reaction heat formation data are very imoprtant for batch reactor behavior analysis and operatoin. So, many types of reaction calorimeter have been introduced and used. In this study, we analyze the dynamic charateristics of the batch reaction calorimeter that is designed in our laboratory. And we introducde suitable temperature control system. As a result, we analyze reatin heat formation data obtained by simulation and introduce its application examples.

  • PDF

Control of a batch reactor by learning operation

  • Lee, Kwang-Soon;Cho, Moon-Khi;Cho, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1277-1283
    • /
    • 1990
  • The iterative learning control synthesized in the frequency domain has been utilized for temperature control of a batch reactor. For this purpose, a feedback-assisted generalized learning control scheme was constructed first, and the convergence and robustness analyses were conducted in the frequency domain. The feedback-assisted learning operation was then implemented in a bench scale batch reactor where reaction heat is simulated using an electric heater. As a result, progressive reduction of temperature control error could be obviously observed as batch operation is repeated.

  • PDF