• Title/Summary/Keyword: basin modelling

Search Result 66, Processing Time 0.027 seconds

Basin modelling with a MATLAB-based program, BasinVis 2.0: A case study on the southern Vienna Basin, Austria (MATLAB 기반의 프로그램 BasinVis 2.0을 이용한 분지 모델링: 오스트리아 비엔나 분지의 남부 지역에 대한 사례 연구)

  • Lee, Eun Young;Wagreich, Michael
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.615-630
    • /
    • 2018
  • Basin analysis is a research field to understand the formation and evolution of sedimentary basins. This task requires various geoscientific datasets as well as numerical and graphical modelling techniques to synthesize results dimensionally in time and space. For basin analysis and modelling in a comprehensive workflow, BasinVis 1.0 was released as a MATLAB-based program in 2016, and recently the software has been extended to BasinVis 2.0, with new functions and revised user-interface. As a case study, this work analyses the southern Vienna Basin and visualizes the sedimentation setting and subsidence evolution to introduce the basin modelling functions of BasinVis 2.0. This is a preliminary study for a basin-scale modelling of the Vienna Basin, together with our previous studies using BasinVis 1.0. In the study area, during the late Early Miocene, sedimentation and subsidence are significant along strike-slip and en-echelon listric normal faults. From the Middle Miocene onwards, however, subsidence decreases abruptly over the area and this situation continues until the Late Miocene. This is related to the development of the pull-apart system and corresponds to the episodic tectonic subsidence in strike-slip basins. The subsidence of the Middle Miocene is confined mainly to areas along the strike-slip faults, while, from the late Middle Miocene, the depocenter shifts to a depression along the N-S trending listric normal faults. This corresponds to the regional paleostress regime transitioning from NE-SW trending transtension to E-W trending extension. This study applies various functions and techniques to this case study, and the modelled results demonstrate that BasinVis 2.0 is effective and applicable to the basin modelling.

Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation (수치해석적 다짐 작용 연구: 공극률과 퇴적층 두께 변화에 미치는 영향)

  • Kim, Yeseul;Lee, Changyeol;Lee, Eun Young
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.631-640
    • /
    • 2018
  • To understand the formation and evolution of a sedimentary basin in basin analysis and modelling studies, it is important to analyze the thickness and age range of sedimentary layers infilling a basin. Because the compaction effect reduces the thickness of sedimentary layers during burial, basin modelling studies typically restore the reduced thickness using the relation of porosity and depth (compaction trend). Based on the compilation plots of published compaction trends of representative sedimentary rocks (sandstone, shale and carbonate), this study estimates the compaction trend ranges with exponential curves and equations. Numerical analysis of sedimentary compaction is performed to evaluate the variation of porosity and layer thickness with depth at key curves within the compaction trend ranges. In sandstone, initial porosity lies in a narrow range and decreases steadily with increasing depth, which results in relatively constant thickness variations. For shale, the porosity variation shows two phases which are fast reduction until ~2,000 m in depth and slow reduction at deeper burial, which corresponds to the thickness variation pattern of shale layers. Carbonate compaction is characterized by widely distributed porosity values, which results in highly varying layer thickness with depth. This numerical compaction analysis presents quantitatively the characteristics of porosity and layer thickness variation of each lithology, which influence on layer thickness reconstruction, subsidence and thermal effect analyses to understand the basin formation and evolution. This work demonstrates that the compaction trend is an important factor in basin modelling and underlines the need for appropriate application of porosity data to produce accurate analysis outcomes.

3D Density Modelling of the Yellow Sea Sedimentary Basin

  • Choi, Sungchan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.283-291
    • /
    • 2004
  • To find out the locus of the Quinling-Dabie-Sulu continental collision’s boundary and to estimate underground structure of the sedimentray basin in the Yellow Sea, three dimensional density modelling is carrid out by using gravity dataset (Free Air Anomaly), which is measured by Tamhae 2, KIGAM in a period between 2000 and 2002. The measured gravity anomaly in the investigations area is mainly responsed by depth and density differences between the sedimentary basin and the basement. The high density model-bodies extend mainly from the southern part of China to the middle-western part of the Korean Peninsula, which might be emplaced along the continental collision’s boundary. The total volume of the very low density model-bodies might be expected at about 20,000 km3 in the model area.

  • PDF

MOSIM NETWORK FLOW MODELING FOR IMPROVING CRITICAL HABITAT IN PLATTE RIVER BASIN (플랫강 유역의 위험에 처한 서식지 보호를 위한 MODSIM 하천 네트워크 흐름모의)

  • Lee, Jin-Hee;Kim, Kil-Ho;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2039-2043
    • /
    • 2007
  • Like other major river basin systems in the West of the United States the Platte River Basin are faced with the challenges of allocating more water for plant and animal species. A part of the Central Platte River was designated as critical habitat for the whooping crane in 1978. The water allocation system in the Platte River Basin is dominated by the Prior Appropriation Doctrine, which allocates water according to the priorities based on the date of water use. The Platte River Basin segregated into five subregions for purpose of analysis. 24 years of historic records of monthly flow and all the demands were complied. The simulation of river basin modeling includes physical operation of the system including water allocation by water rights and interstate compact agreements, reservoir operations, and diversion with consumptive use and return flow. MODSIM, a generalized river basin network model, was used for estimating the timing and magnitude of impacts on river flows and diversions associated with water transfers from each region. A total of 20 alternatives were considered, covering transfers from each of the five regions of basin with several options. The result shows that the timing and availability of augmented water at the critical habitat is not only a function of use by junior appropriators, but also of river losses, and timing of return flows.

  • PDF

A study on the crustal structure of the continental margin in the East Sea along the Korea Peninsula using potential data (포텐셜자료를 이용한 한반도 동해 대륙주변부의 지각구조에 관한 연구)

  • Kim, Chang-Hwan;Yoo, Lee-Sun;Park, Chan-Hong;Suk, Dong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • We investigated the undulation of Moho depth and the crustal structure of the continental margin in the East Sea along the Korea Peninsula from inversion and modelling using potential data and previous seismic results. Free-air gravity anomalies generally reflect topography effect. Bouguer gravity anomalies increase toward the Ulleung Basin, indicating that Moho depth is shallower under the Ulleung Basin. Positive magnetic anomalies exist along the continental margin and decrease toward the Ulleung Basin. In analytic signal, the small anomaly in the Hupo Bank infers that the Hupo Bank is uplifted by igneous intrusion and the strong anomaly on the continental slope denotes existence of SDR(seaward dipping reflectors), which are in accordance with the location of SDR detected in previous seismic studies. The inversion result of Bouguer gravity anomaly and the 2-dimensional gravity modelling indicate that the undulation of Moho depth shallows from the continental shelf toward the Ulleung Basin. This is in good agreement with the Moho depth calculated by the previous seismic velocity model using ocean bottom seismometer(OBS). The 2-dimensional gravity modelling infers magmatic underplating zone under the lower continental crust on the continental margin of the East Sea, indicating the possible rifiting of the continental margin.

  • PDF

THE STRUCTURE, STRATIGRAPHY AND PETROLEUM GEOLOGY OF THE MURZUK BASIN, SOUTHWEST LIBYA

  • JHO Jhoon Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.57-72
    • /
    • 2000
  • The Murzuk Basin covers an area in excess of $350,000{\cal}km^2$, and is one of several intra-cratonic sag basins located on the Saharan Platform of North Africa. Compared with some of these basins, the Murzuk Basin has a relatively simple structure and stratigraphy, probably as a result of it's location on a the East Saharan Craton. The basin contains a sedimentary fill which reaches a thickness of about $4,000{\cal}m$ in the basin centre. This fill can be divided into a predominantly marine Paleozoic section, and a continental Mesozoic section. The principal hydrocarbon play consists of a glacial-marine sandstone reservoir of Cambro-Ordovician age, sourced and sealed by overlying Silurian shales. The present day borders of the basin are defined by tectonic uplifts, each of multi-phase generation, and the present day basin geometry bears little relation to the more extensive Early Palaeozoic sedimentary basin within which the reservoir and source rocks were deposited. The key to the understanding of the Cambro-Ordovician play is the relative timing of oil generation compared to the Cretaceous and Tertiary inversion tectonics which influenced source burial depth, reactivated faults and reorganised migration pathways. At the present day only a limited area of the basin centre remains within the oil generating window. Modelling of the timing and distribution of source rock maturity uses input data from AFTA and fluid inclusion studies to define palaeo temperatures, shale velocity work to estimate maximum burial depth and source rock geochemistry to define kinetics and pseudo-Ro. Migration pathways are investigated through structural analysis. The majority of the discovered fields and identified exploration prospects in the Murzuk Basin involve traps associated with high angle reverse faults. Extensional faulting occurred in the Cambro-Ordovician and this was followed by repeated compressional movements during Late Silurian, Late Carboniferous, Mid Cretaceous and Tertiary, each associated with regional uplift and erosion.

  • PDF

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF

Structural Implications of Gravity Anomalies around Dok Island and its Surrounding Seamounts in the East Sea (독도 및 그 주변 해산 중력 이상의 지구조적 해석)

  • 김원균;김창환;박찬홍;한현철;권문상;민경덕;김백수;최영섭
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.537-545
    • /
    • 2000
  • Shipborne gravity data are analyzed to investigate crustal structure under Dok Island and its surrounding seamounts located in border of Ulleung Basin and Oki Bank in the East Sea. Relatively low free-air gravity anomaly compared with the volume of seamounts may be explainable by isostatic compensation. From 1 st to 3rd Dokdo Seamounts, the decrease of free-air and Bouguer gravity anomalies implies the different degree of isostatic compensation, crustal thickness or/and density contrast. 3-D gravity modelling shows that seamounts have the mirror roots for regional Airy isostatic compensation, and from Ulleung Basin to Oki Bank, Moho discontinuity deepens and the density of crust is decreases. The results infer that study area is transitional zone from thin oceanic to thick continental crust. The depth of Moho discontinuity is about 15∼16 km, which may be interpreted as an uplifting of Mantle to shallow depth comparing with other borders of the Ulleung Basin.

  • PDF

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (I) - Focus on Estimation of Flood Discharge - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(I) - 홍수량 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.781-796
    • /
    • 2019
  • This study attempted to simulate the flood discharge in the Duman River basin containing Hoeryong City and Musan County of North Korea where were damaged from Typhoon Lionrock on August, 2016. For hydrological modelling remotely sensed datasets were used to estimate watershed properties and hydrologic factors because the basin is ungauged where hydrological observation is not exist or sparse. For validation we applied our methodology and datasets to the Soyanggang Dam basin. It has not only similar shape factor and compactness ratio to those of the target basin but also accurate, adequate, and abundant measurements. The results showed that the flood discharge from Typhoon Lionrock corresponded to three to five years design floods in the Duman River basin. This indicate that the Duman River basin has a high risk of flood in the near future. Finally this study demonstrated that remotely sensed data and geographic information could be utilized to simulate flood discharge in an ungauged watershed.