• Title/Summary/Keyword: basidiomycetous yeast

Search Result 17, Processing Time 0.025 seconds

Isolation and Identification of Yeast Strain from Fermented Tea (발효차로부터 효모의 분리 및 동정)

  • Kang, Ok-Ju
    • Korean journal of food and cookery science
    • /
    • v.24 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • In searching for yeast to be utilized as biocontrol agents, a single yeast strain was isolated from Camellia sinensis based on its morphological, cultural, physiological, and biochemical properties, as well as by molecular techniques. This single strain was pink to red in color and designated as strain JY-1. The effects of temperature, pH, NaCl concentration, and ethanol concentration on the growth of the JY-l strain were examined for the JY-1. Growth occurred at temperatures ranging from 20 to $35^{\circ}C$, and between pH 3.0 and 12.0, with optimal growth at $25-30^{\circ}C$ and pH 5.0. The yeast also grew in the presence of 0-2% (w/v) NaCl and 0-4% (v/v) EtOH. The isolate was further classified based on biochemical characteristics using the VITEK system. The biochemical data obtained using this system were similar to those of Rhodotorula glutinis/Rhodotorula mucilaginosa (exhibiting a 93% matching level). Molecular phylogenetic analysis based on l8S rDNA sequences indicated that the yeast represented a basidiomycetous species, and its highest degree of sequence similarity was with Rhodosporidium azoricum, strain JCM11251 (99%).

Microbe Hunting: A Curious Case of Cryptococcus

  • Bartlett Karen H.;Kidd Sarah;Duncan Colleen;Chow Yat;Bach Paxton;Mak Sunny;MacDougall Laura;Fyfe Murray
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.199-206
    • /
    • 2005
  • C. neoformans-associated cryptococcosis is primarily a disease of immunocompromised persons, has a world-wide distribution, and is often spread by pigeons in the urban environment. In contrast, C. gattii causes infection in normal hosts, has only been described in tropical and semi-tropical areas of the world, and has a unique niche in river gum Eucalyptus trees. Cryptococcosis is acquired through inhalation of the yeast propagules from the environment. C. gattii has been identified as the cause of an emerging infectious disease centered on Vancouver Island, British Columbia, Canada. No cases of C. gattii-disease were diagnosed prior to 1999; the current incidence rate is 36 cases per million population. A search was initiated in 2001 to find the ecological niche of this basidiomycetous yeast. C. gattii was found in the environment in treed areas of Vancouver Island. The highest percentage of colonized-tree clusters were found around central Vancouver Island, with decreasing rates of colonization to the north and south. Climate, soil and vegetation cover of this area, called the Coastal Douglas fir biogeoclimatic zone, is unique to British Columbia and Canada. The concentration of airborne C. gattii was highest in the dry summer months, and lowest during late fall, winter, and early spring, months which have heavy rainfall. The study of the emerging colonization of this organism and subsequent cases of environmentally acquired disease will be informative in planning public health management of new routes of exposure to exotic agents in areas impacted by changing climate and land use patterns.

Mrakia terrae sp. nov. and Mrakia soli sp. nov., Two Novel Basidiomycetous Yeast Species Isolated from Soil in Korea

  • Park, Yuna;Maeng, Soohyun;Oh, Junsang;Sung, Gi-Ho;Srinivasan, Sathiyaraj
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.469-475
    • /
    • 2021
  • Three strains, YP416T, YP421T, and Y422, were isolated from soil samples in Pocheon City, Gyeonggi province, South Korea. The strains belong to two novel yeast species in the genus Mrakia. Molecular phylogenetic analysis showed that the strain YP416T was closely related to Mrakia niccombsii. Still, it differed by 9 nucleotide substitutions with no gap (1.51%) in the D1/D2 domain of the LSU rRNA gene and 14 nucleotide substitutions with 7 gaps (2.36%) in the ITS region. The strain YP421T differed from the type strain of the most closely related species, Mrakia aquatica, by 5 nucleotide substitutions with no gap (0.81%) in the D1/D2 domain of the LSU rRNA gene and 9 nucleotide substitutions with one gap (1.43%) in the ITS region. The names Mrakia terrae sp. nov. and Mrakia soli sp. nov. are proposed, with type strains YP416T (KCTC 27886T) and YP421T (KCTC 27890T), respectively. MycoBank numbers of the strains YP416T and YP421T are MB 836844 and MB 836847, respectively.

Structure and Function of the Genes Involved in the Biosynthesis of Carotenoids in the Mucorales

  • Iturriaga, Enrique A.;Velayos, Antonio;Eslava, Arturo P.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.263-274
    • /
    • 2000
  • Carotenoids are widely distributed natural pigments which are in an increasing demand by the market, due to their applicatins in the human food, animal feed, cosmetics, and pharmaceutical industries. Although more than 600 carotenoids have been identified in nature, only a few are industrially important (${\beta}$-carotene, astaxanthin, lutein or lycopene). To date chemical processes manufacture most of the carotenoid production, but the interest for carotenoids of biological origin is growing since theire is an increased public concern over the safety of artificial food colorants. Although much interest and effort has been devoted to the use of biological sources for industrially important carotenoids, only the production of biological ${\beta}$-carotene and astaxanthin has been reported. Among fungi, several Mucorales strains, particularly Blakeslea trispora, have been used to develop fermentation processes for the production of ${\beta}$-carotene on almost competitive cost-price levels. Similarly, the basidiomycetous yeast Xanthophyllomyces dendrorhous (the perfect state of Phaffia rhodozyma), has been proposed as a promising source of astaxanthin. This paper focuses on recent findings on the fungal pathways for carotenoid production, especially the structure and function of the genes involved in the biosynthesis of carotenoids in the Mucorales. An outlook of the possibilities of an increased industrial production of carotenoids, based on metabolic engineering of fungi for carotenoid content and composition, is also discussed.

  • PDF

Microbe Hunting: A Curious Case of Cryptococcus

  • Bartlett, Karen H.;Kidd, Sarah;Duncan, Colleen;Chow, Yat;Bach, Paxton;Mak, Sunny;MacDougall, Laura;Fyfe, Murray
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.45-72
    • /
    • 2005
  • C. neoformans-associated cryptococcosis is primarily a disease of immunocompromised persons, has a world-wide distribution, and is often spread by pigeons in the urban environment. In contrast, C. gattii causes infection in normal hosts, has only been described in tropical and semi-tropical areas of the world, and has a unique niche in river gum Eucalyptus trees. Cryptococcosis is acquired through inhalation of the yeast propagules from the environment. C. gattii has been identified as the cause of an emerging infectious disease centered on Vancouver Island, British Columbia, Canada. No cases of C. gattii-disease were diagnosed prior to 1999; the current incidence rate is 36 cases per million population. A search was initiated in 2001 to find the ecological niche of this basidiomycetous yeast. C. gaftii was found in the environment in treed areas of Vancouver Island. The highest percentage of colonized-tree clusters were found around central Vancouver Island, with decreasing rates of colonization to the north and south. Climate, soil and vegetation cover of this area, called the Coastal Douglas fir biogeoclimatic zone, is unique to British Columbia and Canada. The concentration of airborne C. gattii was highest in the dry summer months, and lowest during late fall, winter, and early spring, months which have heavy rainfall. The study of the emerging colonization of this organism and subsequent cases of environmentally acquired disease will be informative in planning public health management of new routes of exposure to exotic agents in areas impacted by changing climate and land use patterns. Cryptococcosis is an infection associated with an encapsulated, basidiomycetous yeast Cryptococcus neoformans. The route of entry for this organism is through the lungs, with possible systemic spread via the circulatory system to the brain and meninges. There are four cryptococcal serogroups associated with disease in humans and animals, distinguished by capsular polysaccharide antigens. Cryptococcus neoformans: variety grubii (serotype A), variety neoformans (serotype D), and variety gattii (serotypes B and C) (Franzot et at. 1999). C. neoformans variety gattii has recently been elevated to species status, C. gattii. C. neoformans val. grubii and var. neoformans have a world-wide distribution, and are particularly associated with soil and weathered bird droppings. In contrast, C. gattii (CG) is not associated with bird excrement, is primarily found in tropical and subtropical climates, and has a restricted environmental niche associated with specific tree species. (Ellis & Pfiffer 1990) Ellis and Pfeiffer theorize that, as a basidiomycete, CG requires an association with a tree in order to become pathogenic to mammals. In Australia, CG has been found to be associated with five species of Eucalypts, Eucalyptus camaldulensis, E. tereticornis, E. blakelyi, E. gomphocephala, and E. rudis. Eucalypts, although originally native to Australia, now have a world-wide distribution. CG has been found associated with imported eucalypts in India, California, Brazil, and Egypt. In addition, in Brazil and Columbia, where eucalypts have been naturalized, native trees have been shown to harbour CG (Callejas et al. 1998; Montenegro et al. 2000). In British Columbia, Canada, since the beginning of 1999, there have been 120 confirmed cases of cryptococcal mycoses associated with CG in humans, including 4 fatalities (data from British Columbia Centre for Disease Control), and over 200 cases in animal pets in BC (data from Central Laboratory for Veterinarians). What is remarkable about the BC outbreak of C. gattii-cryptococcosis is that all of the cases have been residents of, or visitors to, a narrow area along the eastern coast of Vancouver Island, BC, from the tip of the island in the south (Victoria) to Courtenay on the north-central island as illustrated in Figure 1. Of the first 38 human cases, 58% were male with a mean age of 59.7 years (range 20 - 82): 36 cases (95%) were Caucasian. Ten cases (26%) presented with meningitis, the remainder presented with respiratory symptoms. Cultures recovered from cases of cryptococcosis associated with the outbreak were typed as serogroup B, which is specific to CG (Bartlett et al. 2003). This was the first reported outbreak of CVG in Canada, or indeed, the world. Where infection with CG is endemic, for example, Australia, the incidence of cryptococcosis ranges from 1.8 - 4.7 per million between the southern and northern states (Sorrell 2001). However, the overall incidence of cryptococcosis in immunocompenent individuals has been estimated at 0.2 per million population per year (Kwon-Chung et al. 1984). The population of Vancouver Island is approximately 720,000,consequently, even if the organism were endemic, one would expect a maximum of 0.15 cases of cryptococcal disease annually.

  • PDF

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Description of Vishniacozyma terrae sp. nov. and Dioszegia terrae sp. nov., Two Novel Basidiomycetous Yeast Species Isolated from Soil in Korea

  • Soohyun Maeng;Yuna Park;Gi-Ho Sung;Hyang Burm Lee;Myung Kyum Kim;Sathiyaraj Srinivasan
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.439-447
    • /
    • 2022
  • Two strains, YP344 and YP579 were isolated from soil samples in Pocheon City, Gyeonggi Province, South Korea. The strains YP344 and YP579 belong to the genus Vishniacozyma and Dioszegia, respectively. The molecular phylogenetic analysis showed that the strain YP344 was closely related to Vishniacozyma peneaus. Strain YP344T differed by four nucleotide substitutions with no gap (0.70%) in the D1/D2 domain of the LSU rRNA gene and 16 nucleotide substitutions with 8 gaps (5.76%) in the ITS region. On the other hand, the strain YP579T varied from the type strain of the most closely related species, Dioszegia zsoltii var. zsoltii, by 6 nucleotide substitutions with four gaps (1.64%) in the D1/D2 domain of LSU rRNA gene and 26 nucleotide substitutions with 14 gaps (8.16%) in the ITS region. Therefore, the name Vishniacozyma terrae sp. nov. and Dioszegia terrae sp. nov. are proposed, with type strains YP344T (KCTC27988T) and YP579T (KCTC 27998T), respectively.