• Title/Summary/Keyword: basicity

Search Result 196, Processing Time 0.02 seconds

The Recovery of Valuable Metals from LD-Slag by Smelting Reduction (용융환원법에 의한 LD제강 slag로부터 V의 회수(I))

    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • Smelting reduction technique in arc furnace was applied for the recovery of valuable metal such as V from LD slag. In the present study, the parameters for increasing the reduction rate and the reduction efficiency were selected by changing the oxide additives, melting temperature and basicity. The optimum condition for LD-slag reduction was achieved by $Al_2$$O_3$ addition. The reduction ratio of V was increased in increasing the basicity.

Effects of Axial Ligand Basicity on the Isotropic NMR Shifts in Pyridine-Type Ligands Coordinated to the Paramagnetic Polyoxometalate, $[SiW_{11}Co^{11}O_{39}]^{6-}$

  • 김지영;박석민;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.369-373
    • /
    • 1997
  • When 1H NMR spectra of pyridine, 4-amino-, 4-methyl-, and 4-cyanopyridine coordinated to the paramagnetic polyoxometalate, [SiW11CoⅡO39]6- in D2O are compared, both α- and β-proton peaks are shifted upfield as the basicity of the ligand decreases. The isotropic shifts are separated into contact and pseudocontact contributions by assuming that the contact shifts are proportional to the isotropic shifts of the same ligands coordinated to [SiW11NiⅡO39]6-. This separation reveals that the shift variations with the axial ligand basicity are dominated by changes in the magnetic anisotropy (pseudocontact shift) of [SiW11CoⅡ(ptl)O39]6- (ptl=pyridine-type ligand). The magnitude of the magnetic anisotropy in a series of pyridine-type ligands increases linearly as the pKa of their conjugate acids decreases.

Synthesis and Latent Characteristics of Thermal Cationic Latent Catalysts by Change of Substituent (치환기 변화에 따른 열잠재성 양이온 촉매의 합성과 잠재특성 연구)

  • Park, Soo-Jin;Heo, Gun-Young;Lee, Jae-Rock;Shim, Sang-Yeon;Suh, Dong-Hack
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • The syntheses of thermal latent catalysts have been carried out by modifying the substituent of pyrazinium salts. The thermal latent properties and cure behaviors of difunctional epoxy resin (diglycidylether of bisphenol-A, DGEBA) with 1 wt% of catalyst as an initiator were investigated by dynamic DSC method. As a result, the synthesized catalysts showed the good latent thermal properties in epoxy system. With increasing the basicity of substituted catalyst, the cure temperature and activation energy of epoxy system were increased, whereas the activity was decreased. This was probably due to the fact that the activity and cure behavior were controlled by ring strain and basicity of substituent. Consequently, the catalyst activity modified by methyl group as an electron donor was decreased in increasing of basicity in an initiation step of epoxy cure system. This is due to a decreasing of stabilities of both leaving group of pyrazinium salts and benzyl cation. However, the catalyst activity modified by cyano group as an electron acceptor was increased in increasing the stability of benzyl cation resulting from organic effects and resonance.

  • PDF

Effect of the Slag Former on the Metal Melting and Radionuclides Distribution in an Electric Arc Furnace

  • Song Song-Pyung;Min Byung-Youn;Choi Wang-Kyu;Chung Chong-Hun;Oh Won-zin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.32-37
    • /
    • 2005
  • The characteristics of the metal melting and radionuclide distribution of the radioactive has been investigated in a lab-scale arc furnace. The slag former based on the constituents of silica, calcium oxide, aluminum oxide, borate and calcium fluoride additions was used for melting of the stainless and carbon steel. In the melting of the stainless steel, the amount of slag formation increased with an increase of the concentration of the slag former. But the effects of the slag basicity on the amount of stag formation showed a local maximum value of the slag formation with an increase of the basicity index in the melting of the stainless steel as well as in the melting of the carbon steel. With an increase of the amount of slag former addition, the trends of the cobalt distribution into the ingot and the stag depended on the kind of slag former used in the melting of the stainless steel while the effect of the slag basicity on the distribution of the cobalt was not clarified in the melting of carbon steel. Tn the melting of the carbon steel, the strontium was captured at up to $50\%$ into the slag phase. Cesium was completely eliminated from the melt of the stainless steel as well as the carbon steel and distributed to the dust phase.

  • PDF

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Melting Characteristics of Asbestos Cement Slate on Basicity Control (염기도 조절에 의한 석면슬레이트 용융특성)

  • Yun, Jinhan;Keel, Sangin;Min, Taijin;Lee, Chungkyu;Jang, Duhun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.159.2-159.2
    • /
    • 2010
  • Asbestos is the collective name for a group of naturally occurring minerals in their fibrous form and hydrous silicates of magnesium and a mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. Asbestos has been used for a wide range of manufactured goods, because of its fiber strength and heat resistant properties. Nevertheless harmful of asbestos is quite serious. Exposure to airborne friable asbestos may result in a potential health risk because persons breathing the air may breathe in asbestos fibers. Continued exposure can increase the amount of fibers that remain in the lung. Fibers embedded in lung tissue over time may cause serious lung diseases including asbestosis, lung cancer. In this paper, we carried out as fundamental study for dispose of asbestos cement slate safely and perfectly. Melting Temperature of asbestos need to more than $1,520^{\circ}C$ and specially asbestos cement slate need more energy than that of pure asbestos. We need to decrease melting temperature of asbestos cement slate for economical efficiency. To the purpose, glass and bottom ash were chosen as additives for basicity control. we analyzed about properties of asbestos cements slate, melting characteristics on the additives ratio and temperature. We confirmed about harmlessness of melting slag through analysis of scanning electron microscope(SEM) and x-ray diffractometer(XRD).

  • PDF

Removal of Chromium by Activated Carbon Fibers Plated with Copper Metal

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • In this work, activated carbon fibers (ACFs) were plated with copper metal using electroless plating method and the effects of surface properties and pore structures on chromium adsorption properties were investigated. Surface properties of ACFs have been characterized using pH and acid/base values. BET data with $N_2$ adsorption were used to obtain the structural parameters of ACFs. The electroless copper plating did significantly lead to a decrease in the surface acidity or to an increase in the surface basicity of ACFs. However, all of the samples possessed a well-developed micropore. The adsorption capacity of Cr(III) for the electroless Cu-plated ACFs was higher than that of the as-received, whereas the adsorption capacity of Cr(VI) for the former was lower than that of the latter. The adsorption rate constants ($K_1$, $K_2$, and $K_3$) were also evaluated from chromium adsorption isotherms. It was found that $K_1$ constant for Cr(III) adsorption depended largely on surface basicity. The increase of Cr(III) adsorption and the decrease of Cr(VI) adsorption were attributed to the formation of metal oxides on ACFs, resulting in increasing the surface basicity.

  • PDF

A STUDY ON THE DEVELOFMENT OF CARD URIJESR USING DOMESTIC RESOURCES (국내자원(國內資源)을 활용(活用)한 가탄재(加炭材)의 개발(開發)에 관(關)한 연구(硏究))

  • Choe, Jeong-Gil;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.2 no.3
    • /
    • pp.16-24
    • /
    • 1982
  • For the purpose of development of domestic carburizer, when the basicity of ash in carburizer was changed from $Na_2O/Al_2O_3+SiO_2$ ; 0.06 to $Na_2O/Al_2O_3+SiO_2$ ; 0,196wt%, using $Na_2O$ as flux for domestic graphite resource (Bong Myung armorphous graphite), carburizing efficiency was improved as basicity increased, optimum basicity value was $Na_2O/Al_2O_3+SiO_2$ ; 0.151. This means that $Na_2O$ contributed to lower viscosity of slag and raise occurence probability of specific reaction surface between molten iron and carburizer. The experiment of effect of general characteristics offecting carburizing ability of this carburizer was performed, the result is that 10/30 mesh was optimum size of the carburizer and as carbon equivalent of molten iron was higher, carburizing ratio was lowered, but when si concentration was below 1.8% in general cast iron melting region, recovery showed 75-85%. As agitation rate of molten iron and temperature interval were higher, Carburizing ratio was increased and showed max, 94%. Desulfurizing phenomena of molten iron by $Na_2O$ in carburizer didn't appear.

  • PDF

Nitrogen Dissolution in CaO-SiO2-Al2O3-MgO-CaF2 Slags (CaO-SiO2-Al2O3-MgO-CaF2 슬래그의 질소용해도에 관한 연구)

  • Baek, Seoung Bae;Lim, Jong Ho;Jung, Woo Jin;Lee, Seoung Won
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The nitrogen solubility and nitride capacity of $CaO-SiO_2-Al_2O_3-MgO-CaF_2$ slag systems were measured by using gas-liquid equilibration at 1773K. The nitrogen solubility of this slag system decreased with increasing CO partial pressure, with the linear relationship between nitrogen contents and oxygen partial pressure being -3/4. This system was expected to show two types of nitride solution behavior. First, the nitrogen solubility decreased to a minimum value and then increased with the increase of CaO contents. These mechanisms were explained by considering that nitrogen can dissolve into slags as "free nitride" at high basicities and as "incorporated nitride" within the network at low basicities. Also, the basicity of slag and nitride capacity were explained by using optical basicity. The nitrogen contents exhibited temperature dependence, showing an increase in nitrogen contents with increasing temperature.

Hydrogen Behavior in the Steelmaking Process (제강공정에서 수소의 거동)

  • Shim, Sang-chul;Cho, Jung-wook;Hwang, Sang-taek;Kim, Kwang-chun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.