• Title/Summary/Keyword: basic subunit

Search Result 81, Processing Time 0.026 seconds

Differential gene expression pattern in brains of acrylamide-administered mice

  • Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuroprotection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.

The Effect of Cobrotoxin on $NF-{\kappa}B$ binding Activity in Raw264.7 cells

  • Yoo, Jae-Ryong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • Cobrotoxin, a venom of Vipera lebetina turanica, is a group of basic peptidescomposed of 233 amino acids with six disulfide bonds formed by twelve cysteins. NF-kB is activated by subsequent release of inhibitory IkB and translocation of p50. Since sulfhydryl group is present in kinase domain of p50 subunit of NF-kB, cobrotoxin could modify NF-kB activity by protein-protein interaction. We therefore examined effect of cobrotoxin on NF-kB activities in lipopolysaccharide (LPS) and sodium nitroprusside (SNP)-stimulated Raw 264.7 mouse macrophages. Cobrotoxin suppressed the LPS and SNP-induced release of IkB and p50 translocation resulted in inhibition of DNA binding activity of NF-kB. Inhibition of NF-kB resulted in reduction of the LPS and SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of cobrotoxin on the NF-kB activity were blocked by addition of reducing agents dithiothreitol and glutathione. These results demonstrate that cobrotoxin inhibits activation of NF-kB, and suggest that pico to nanomolar range of cobrotoxin could inhibit the expression of genes in the NF-kB signal pathway.

  • PDF

Isolation of Three Unrecorded Yeasts from the Guts of Earthworms Collected from Korea

  • Oh, Hyejin;Kim, Myung Kyum
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.545-553
    • /
    • 2021
  • In 2021, seven yeast strains were isolated from earthworm (Eisenia andrei) gut samples collected from the Nanji Water Regeneration Center in Goyang City, Gyeonggi Province, Korea. A total of seven yeasts were isolated, of which three strains have not been previously reported in Korea. To identify the yeasts, pairwise sequence comparisons of large subunit (LSU) rDNA sequences were performed using the basic local alignment search tool (BLAST). Assimilation test and cell morphology analysis were performed using the API 20C AUX kit and phase contrast microscope, respectively. Five of the seven strains were assigned to the genus Candida of the order Saccharomycetales of the class Saccharomycetes, and two to the genus Apiotrichum of the order Trichosporonales of the class Tremellomycetes. The yeast strain Candida sojae E2 belongs to the family Debaryomycetaceae, and Apiotrichum laibachii E8 and A. laibachii E9 belong to the family Trichosporonaceae. All strains were cultured in yeast mold agar for three days and showed different colony forms. C. sojae E2 was round and entire shaped, while A. laibachii E8 and A. laibachii E9 was round and convex shaped. This study focuses on the description of the three yeast strains that have not been officially reported in Korea.

Phylogenetic Analysis of Harmful Algal Bloom (HAB)-Causing Dinoflagellates Along the Korean Coasts, Based on SSU rRNA Gene

  • Kim, Se-Hee;Kim, Keun-Yong;Kim, Chang-Hoon;Lee, Woo-Sung;Chang, Man;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.959-966
    • /
    • 2004
  • Twenty-three cultures of harmful algal bloom (HAB)-(causing dinoflagellates were isolated from the coastal waters of Korea. For each of the 14 morphospecies, the nuclearencoded small subunit (SSU) rDNA was analyzed to determine the phylogenetic relatedness of the species. Despite temporal and spatial isolation, 3-4 clonal cultures of Alexandrium catenella, Cochlodinium polykrikoides, and Gymnodinium catenatum had 100% identical SSU rDNA sequences. In contrast, heterogeneities in the SSU rDNA sequences were observed in Akashiwo sanguinea and Lingulodinium polyedrum strains. Extreme sequence polymorphism was shown within the SSU rRNA genes of an Al. tamarense clonal culture. A homology search in GenBank revealed that 11 dinoflagellate species were located in clusters corresponding to their morphological classification. The SSU rDNA sequences of C. polykrikoides, Gyrodinium instriatum, and Pheopolykrikos hartmannii, which were determined for the first time in this study, showed the following phylogenetic relationships: C. polykrikoides formed an independent branch separated from other dinoflagellates; Gyr. instriatum was placed in a monophyletic group with Gyr. dorsum and Gyr. uncatenum; and Ph. hartmanii, which forms a distinct two-celled pseudocolony, belonged to Gymnodinium sensu Hansen and Moestrup.

Effects of fission yeast ortholog of THOC5 on growth and mRNA export in fission yeast (THOC5의 분열효모 이종상동체가 생장 및 mRNA export에 미치는 영향)

  • Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.435-439
    • /
    • 2015
  • THO/TREX complex plays an important role in transcriptional elongation, mRNA processing, nuclear RNA export, and genome stability. A fission yeast, Schizosaccharomyces pombe, SPBC577.04 gene encoding the ortholog of THOC5, a component of THO/TREX complex, was identified and characterized. The S. pombe thoc5 (spthoc5) is not essential for both growth and mRNA export, but deletion of the spthoc5 gene caused growth defect and slight accumulation of $poly(A)^+$ RNA in the nucleus. And the functional spThoc5-GFP protein is localized mainly in the nucleus. Co-immunoprecipitation analysis showed that the Hpr1(THOC1) protein, an evolutionally well-conserved component of THO/TREX complex, interacted with spThoc5 as well as Tho2(THOC2), another subunit of THO complex. These results suggest that S. pombe Thoc5 as a component of THO/TREX complex is also involved in mRNA export from the nucleus.

Effects of the Repression of sphpr1 Expression on Growth and mRNA Export in Fission Yeast (분열효모에서 sphpr1 유전자의 결실이 생장 및 mRNA Export에 미치는 영향)

  • Lee, Hyun-Joo;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.171-174
    • /
    • 2012
  • THOC1/Hpr1 is one subunit of THO complex that is an evolutionally conserved assembly involved in the mRNP packaging and mRNA export during transcription elongation. In fission yeast Schizosaccharomyces pombe, an ortholog (spHpr1) of THOC1/Hpr1 was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spHpr1-coding region with a $kan^r$ gene using one-step gene disruption method. Tetrad analysis showed that the sphpr1 is essential for growth. Over-expression of sphpr1 from strong nmt1 promoter caused no defects of growth and mRNA export. However, repression of the sphpr1 expression resulted in growth inhibition accompanied by accumulation of poly$(A)^+$ RNA in the nucleus. These results suggest that spHpr1 is involved in mRNA export from the nucleus to cytoplasm.

Functional Analysis of the Invariant Residue G791 of Escherichia coli 16S rRNA

  • Song, Woo-Seok;Kim, Hong-Man;Kim, Jae-Hong;Sim, Se-Hoon;Ryou, Sang-Mi;Kim, Sang-Goo;Cha, Chang-Jun;Cunningham, Philip R.;Bae, Jee-Hyeon;Lee, Kang-Seok
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.418-421
    • /
    • 2007
  • The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.

Role of Nuclear Factor (NF)-κB Activation in Tumor Growth and Metastasis (종양의 성장 및 전이에 있어서 NF-κB의 역할)

  • Ko, Hyun-Mi;Choi, Jung-Hwa;Ra, Myung-Suk;Im, Suhn-Young
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2003
  • Background: Platelet-activating factor (PAF) induces nuclear factor $(NF)-{\kappa}B$ activation and angiogenesis and increases tumor growth and pulmonary tumor metastasis in vivo. The role of $NF-{\kappa}B$ activation in PAF-induced angiogenesis in a mouse model of Matrigel implantation, and in PAF-mediated pulmonary tumor metastasis were investigated. Methods: Angiogenesis using Matrigel and experimental pulmonary tumor metastasis were tested in a mouse model. Electrophoretic mobility shift assay was done for the assessment of $NF-{\kappa}B$ translocation to the nucleus. Expression of angiogenic factors, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\alpha}$, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were tested by RT-PCR and ELISA. Results: PAF induced a dose- and time-dependent angiogenic response. PAF-induced angiogenesis was significantly blocked by PAF antagonist, CV6209, and inhibitors of $NF-{\kappa}B$ expression or action, including antisense oligonucleotides to p65 subunit of $NF-{\kappa}B$ (p65 AS) and antioxidants such as ${\alpha}$-tocopherol and N-acetyl-L-cysteine. In vitro, PAF activated the transcription factor, $NF-{\kappa}B$ and induced mRNA expression of $TNF-{\alpha}$, $IL-1{\alpha}$, bFGF, VEGF, and its receptor, KDR. The PAF-induced expression of the above mentioned factors was inhibited by p65 AS or antioxidants. Also, protein synthesis of VEGF was increased by PAF and inhibited by p65 AS or antioxidants. The angiogenic effect of PAF was blocked when anti-VEGF antibodies was treated or antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF was co-administrated, but not by antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF each alone. PAF-augmented pulmonary tumor metastasis was inhibited by p65 AS or antioxidants. Conclusion: These data indicate that PAF increases angiogenesis and pulmonary tumor metastasis through $NF-{\kappa}B$ activation and expression of $NF-{\kappa}B$-dependent angiogenic factors.

Diversity Analysis for Archaeal amoA Gene in Marine Sediment of Svalbard, Arctic Circle (북극 Svalbard 지역 해양 퇴적물의 고세균 amoA 유전자의 다양성 분석)

  • Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.164-168
    • /
    • 2014
  • The ecosystem of the Arctic region has been increasingly affected by global warming. Archaeal ammonia monooxygenase alpha subunit coding gene (amoA) which is a key enzyme for nitrification was used to investigate the effect of runoff water of ice melt on microbial community of nitrogen cycle. The archaeal amoA genes at coastal area of Svalbard, Arctic region were PCR-amplified and sequenced after clone library construction. Analysis of archaeal amoA gene clone libraries suggested that the station 188 which is in the vicinity to the area of runoff water harbor lower ammonia-oxidizing archaeal diversity than the station 176 and 184. The average amino acid sequence identity within all archaeal amoA gene clones was 94% (with 91% nucleotide sequence identity). While all the clones of the station 188 were affiliated with Nitrosoarchaeaum clade containing strains isolated from low-salinity and terrestrial environments, about 45% of total clones of the station 176 and 184 were related to marine Nitosopumilus clade. Interestingly, other typical archaeal amoA gene clones of thaumarchaeal I.1b clade frequently retrieved from terrestrial environments was identified at station 188. Microbial community of nitrogen cycle in marine sediment might be affected by input of sediments caused by runoff glacier melt waters.

Investigation of Conservative Genes in 711 Prokaryotes (원핵생물 711종의 보존적 유전자 탐색)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1007-1013
    • /
    • 2015
  • A COG (Cluster of Orthologous Groups of proteins) algorithm was applied to detect conserved genes in 711 prokaryotes. Only COG0080 (ribosomal protein L11) was common among all the 711 prokaryotes analyzed and 58 COGs were common in more than 700 prokaryotes. Nine COGs among 58, including COG0197 (endonuclease III) and COG0088 (ribosomal protein L4), were conserved in a form of one gene per one organism. COG0008 represented 1356 genes in 709 of the prokaryotes and this was the highest number of genes among 58 COGs. Twenty-two COGs were conserved in more than 708 prokaryotes. Of these, two were transcription related, four were tRNA synthetases, eight were large ribosomal subunits, seven were small ribosomal subunits, and one was translation elongation factor. Among 58 conserved COGs in more than 700 prokaryotes, 50 (86.2%) were translation related, and four (6.9%) were transcription related, pointing to the importance of protein-synthesis in prokaryotes. Among these 58 COGs, the most conserved COG was COG0060 (isoleucyl tRNA synthetase), and the least conserved was COG0143 (methionyl tRNA synthetase). Archaea and eubacteria were discriminated in the genomic analysis by the average distance and variation in distance of common COGs. The identification of these conserved genes could be useful in basic and applied research, such as antibiotic development and cancer therapeutics.