• Title/Summary/Keyword: basic solutions of elasticity

Search Result 7, Processing Time 0.022 seconds

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads

  • Zhao, Li;Gan, Wei Z.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.27-40
    • /
    • 2015
  • The rational analytical solutions are presented for functionally graded beams subjected to arbitrary tractions on the upper and lower surfaces. The Young's modulus is assumed to vary exponentially along the thickness direction while the Poisson's ratio keeps unaltered. Within the framework of symplectic elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local behavior. The complete elasticity solutions presented here include homogeneous solutions and particular solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered and compared with established results, illustrating the effects of material inhomogeneity on the localized stress distributions.

Rational finite element method for plane orthotropic elastic problems

  • Mao, Ling;Yao, Weian;Gao, Qiang;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.923-937
    • /
    • 2014
  • The rational finite element method is different from the standard finite element method, which is constructed using basic solutions of the governing differential equations as interpolation functions in the elements. Therefore, it is superior to the isoparametric approach because of its obvious physical meaning and accuracy; it has successfully been applied to the isotropic elasticity problem. In this paper, the formulation of rational finite elements for plane orthotropic elasticity problems is deduced. This method is formulated directly in the physical domain with full consideration of the requirements of the patch test. Based on the number of element nodes and the interpolation functions, different approaches are applied with complete polynomial interpolation functions. Then, two special stiffness matrixes of elements with four and five nodes are deduced as a representative application. In addition, some typical numerical examples are considered to evaluate the performance of the elements. The numerical results demonstrate that the present method has a high level of accuracy and is an effective technique for solving plane orthotropic elasticity problems.

Virtual boundary element-equivalent collocation method for the plane magnetoelectroelastic solids

  • Yao, Wei-An;Li, Xiao-Chuan;Yu, Gui-Rong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • This paper presents a virtual boundary element-equivalent collocation method (VBEM) for the plane magnetoelectroelastic solids, which is based on the fundamental solutions of the plane magnetoelectroelastic solids and the basic idea of the virtual boundary element method for elasticity. Besides all the advantages of the conventional boundary element method (BEM) over domain discretization methods, this method avoids the computation of singular integral on the boundary by introducing the virtual boundary. In the end, several numerical examples are performed to demonstrate the performance of this method, and the results show that they agree well with the exact solutions. So the method is one of the efficient numerical methods used to analyze megnatoelectroelastic solids.

2-D Stress Analysis by a Dislocation Model (전위모델 을 이용한 2차원 응력해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 1985
  • A new method is suggested for the solution of plane elasticity problems. With use of the dislocation model in the crack problems, the basic scheme of this method is to find equilibrium Burgers vectors of dislocations which are distributed along the boundary of the first fundamental boundary value problems. The stress distribution in the region can be found by superposition of the contributions of each dislocation. The method is applied to three cases with known analytical solutions, and to a V-notched specimen under uniaxial tension. The numerical results are compared with other available solutions. This method is effective and simple in its use, compared with other numerical methods. The method also provides very accurate solutions in the region except near the boundary where the discretization error is significant. The extrapolation method is suggested for the stresses in the boundary region. Extensive application are also suggested for a general estimate of the computational efficiency of the method.

Free-edge effect in cross-ply laminated plates under a uniform extension

  • Sheng, Hongyu;Ye, Jianqiao
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.377-388
    • /
    • 2004
  • Based on the basic equations of elasticity, free-edge effects on stresses in cross-ply laminated plates are found by using the state space method. The laminates are subjected to uniaxial-uniform extension plate, which is a typical example of general plane strain problem. The study takes into account material constants of all individual material layers and the state equation of a laminate is solved analytically in the through thickness direction. By this approach, a composite plate may be composed of an arbitrary number of orthotropic layers, each of which may have different material properties and thickness. The solution provides a continuous displacement and inter-laminar stress fields across all material interfaces and an approxiamte prediction to the singularity of stresses occurring in the boundary layer region of a free-edge. Numerical solutions are obtained and compared with the results obtained from an alternative numerical method.

Formulation and evaluation of incompatible but convergent rational quadrilateral membrane elements

  • Batoz, J.L.;Hammadi, F.;Zheng, C.;Zhong, W.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.153-168
    • /
    • 2000
  • This paper presents four incompatible but convergent Rational quadrilateral elements, two four-node elements (RQ4Z and RQ4B) and two five-node elements (RQ5Z and RQ5B). The difference between the so-called Rational Finite Element (Zhong and Zeng 1996) and the Free Formulation (Bergan and Nygard 1984) are discussed and compared. The importance of the mode completeness in these formulations is emphasized. Numerical results for several benchmark problems show the good performance of these elements. The two five-nodes elements RQ5Z and RQ5B, which can be viewed as complete quadratic mode elements (with seven stress modes), always give better results than the four nodes elements RQ4Z and RQ4B.

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.