• Title/Summary/Keyword: basic load

Search Result 1,235, Processing Time 0.032 seconds

Elasticity of the Funnel Ribs and Hydrodynamic Characteristics on the Sea Eel Pots (장어통발의 깔대기 탄성과 유체역학적 특성)

  • Kim, Yong-Hae;Ha, Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.157-162
    • /
    • 1987
  • The basic experiments on the plastic sea eel pots used in fishing were carried out in order to investigate the elasticity of the funnel ribs, hydrodynamic resistance, sinking time and diffusion of the bait from June to October, 1987. The elasticity of the bamboo funnel ribs was higher than that of the polypropylene ribs up to the load 150g. The hydrodynamic resistance R (kg) of the pots towing to the head direction horizontally in relation to towing velocity V (m/sec) was expressed as following formula; R=0.36V super(2.01) and coefficient of drag C sub(D) was 0.52. The sinking times of the covered pots by tape fully or partially were late 1-2 second than the typical pots within the water depth 7.5m. The diffusion tendency through the covered pots using dye and sardine extracts solution was concentrated to the entrance more than the typical pots. However, fishing efficiency as number and weight of fish per pots for nine times fishing operation was revealed no difference between the covered pots and the typical pots.

  • PDF

The Seismic Behavior of the Truss-Arch Structure with Seismic Isolation (면진 트러스-아치 구조물의 지진거동 분석)

  • Kim, Gee-Cheol;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2008
  • The various systems as the seismic resistance systems are used to reduce the seismic response of structure. And the seismic isolation system among them is the system that reduces the seismic vibration to be transmitted from foundation to upper structure. The purpose of isolation system is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

A Study on the Prediction Model of Shear Strength of RC Beams Strengthened for Shear by FRP (섬유보강재로 전단보강된 RC보의 전단강도예측을 위한 해석모델에 대한 연구)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.35-46
    • /
    • 2000
  • In this paper, an analytical model is proposed to predict the shear strenth of RC beams strengthened by FRP. This predictional model is composed of two basic models-the upper bound theorem for shear failure (shear tension or shear compression criteria) and a truss model based on the lower bound theorem for diagonal tension creteria. Also, a simple flexural theory based on USD is used to explain flexural failure. The major cause of destruction of RC beams shear strengthened by FRP does not lie in FRP fracture but in the loss of load capacity incurred by rip-off failure of shear strengthening material. Since interfacial shear stree between base concrete and the FRP is a major variable in rip-off failure mode, it is carefully analyzed to derive the shear strengthening effect of FRP. The ultimate shear strength and failure mode of RC beams, using different strengthening methods, estimated in this predictional model is then compared with the result derived from destruction experiment of RC beams shear strengthened using FRP. To verify the accuracy and consistency of the analysis, the estimated results using the predictional model are compared with various other experimental results and data from previous publications. The result of this comparative analysis showed that the estimates from the predictional model are in consistency with the experimental results. Therefore, the proposed shear strength predictional model is found to predict with relative accuracy the shear strength and failure mode of RC beams shear strengthened by FRP regardless of strengthening method variable.

A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures (전통 민도리식 목구조 화통맞춤의 구조적 특성)

  • Yu, Hye-Ran;Kwon, Ki-Hyuk
    • Journal of architectural history
    • /
    • v.21 no.3
    • /
    • pp.7-28
    • /
    • 2012
  • This study is intended to Mindori structure which is general private houses' structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn. 1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed. 2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn't affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks. 3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is. 4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.

Estimation of Reliability Level and Applicability of LRFD Based on Standard Drawings of Railway Cantilever Retaining Walls (철도 옹벽 표준도의 신뢰도수준 및 LRFD 적용성 평가)

  • Kim, In-Soo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.61-76
    • /
    • 2015
  • Recently, geotechnical engineering researches have been conducted on the Limit State Design (LSD) for deep and shallow foundations; however, there are very few studies on the retaining wall. As a basic study for the introduction of the LSD of a railway retaining wall, this study evaluates whether the reliability index satisfies the target reliability index for each failure mode in the standard drawing of the retaining wall. It also analyzes the feasibility of the LSD method by using the Load and Resistance Factor Design (LRFD) for the standard drawing of a retaining wall. In a portion of the standard drawing of the railway retaining wall, the reliability indices of the sliding and bearing capacity failure modes did not satisfy the target reliability index, and could not satisfy the limit state by the LRFD. Hence, the standard drawing of the railway retaining wall will need to be revised if the LSD is to be applied.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

A COMPARATIVE STUDY ON THE FLEXIBILITY OF THE WROUGHT WIRE CLASPS (가공선 크라스프의 가요성에 관한 비교 연구)

  • Eom, Tae-Wan;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.261-270
    • /
    • 1989
  • Bend test is one of the methods comparing the physical properties of the clasp wires. The type of bend test used in this investigation was the cantilever loading of a wrought wire. The purpose of this study was to compare the flexibility of a number of commonly used clasp wires, in according to gauge, alloy and heat treatment, under specific condition of load and deflection. Seven noble and one base metal wires were tested under three conditions as follows: (1) as received, (2) quenched (placed in an over at $700^{\circ}C$ for ten minutes and immediately quenched in water at room temperature.), (3) oven cooled (quencned as described, then placed in an oven at $450^{\circ}C$ for two minutes and uniformly slowly cooled to $250^{\circ}C$ in thirty minutes.) The basic test specimen consists of a sample 25 mm in length and 19, 18 gauge in diameter (17 gauge also in two alloys), and the wire was loaded in the form of straight cantilever beams. Force at 0.25 mm (0.01 inch) and 0.5 mm (0.02 inch) deflections for all samples were recorded. The results were as follows ; 1. Ticonium was least flexible and No. 2 was most flexible in according to gauge, alloy and heat treatment. 2. In most of precious wrought wire, the flexibility was increased, but there was no statistically significant differences between as-received and softened condition. 3. There was no statistically differences between as-received and hardened condition. 4. For each alloy, there were statistically significant differences in flexibility due to clasp diameter.

  • PDF

Alternate metal framework designs for the metal ceramic prosthesis to enhance the esthetics

  • Vernekar, Naina Vilas;Jagadish, Prithviraj Kallahalla;Diwakar, Dr Srinivasan;Nadgir, Ramesh;Krishnarao, Manjunatha Revankar
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.113-118
    • /
    • 2011
  • PURPOSE. The objective of the present study was to evaluate the effect of five different metal framework designs on the fracture resistance of the metal-ceramic restorations. MATERIALS AND METHODS. For the purpose of this study, the central incisor tooth was prepared, and the metal analogue of it and a master die were fabricated. The counter die with the 0.5 mm clearance was used for fabricating the wax patterns for the metal copings. The metal copings with five different metal framework designs were designed from Group 1 to 5. Group 1 with the metal collar, Group 2, 3, 4 and 5 with 0 mm, 0.5 mm, 1 mm and 1.5 mm cervical metal reduction respectively were fabricated. Total of fifty metal ceramic crown samples were fabricated. The fracture resistance was evaluated with the Universal Testing Machine (Instron model No 1011, UK). The basic data was subjected to statistical analysis by ANOVA and Student's t-test. RESULTS. Results revealed that the fracture resistance ranged from 651.2 to 993.6 N/$m^2$. Group 1 showed the maximum and Group 5 showed the least value. CONCLUSION. The maximum load required to fracture the test specimens even in the groups without the metal collar was found to be exceeding the occlusal forces. Therefore, the metal frameworks with 0.5 mm and 1 mm short of the finish line are recommended for anterior metal ceramic restoration having adequate fracture resistance.

Development of Replacing Material for Sand Mat by Using Precious Slag Ball (풍쇄 슬래그를 이용한 샌드매트 대체재 개발에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Yoo, Jeong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Recently, new development projects are being carried out with the soft ground located along the West coast and the South coast. As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems Prior to structures are constructed by the method of improvement of soft ground. The sand mat is usually being used for improvement of soft ground as a horizontal drain material and loading base. But, as the volume is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the feasibility study to use of precious slag ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement character.

  • PDF

Estimation of Monkman-Grant Parameter for Type 316LN and Cr-Mo Stainless Steels (316LN 및 Cr-Mo 스테인리스강의 Monkman-Grant 파라메타 평가)

  • Kim, Woo-Gon;Kim, Sung-Ho;Lee, Kyung-Yong;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.223-230
    • /
    • 2001
  • The Monkman-Grant (M-G) and its modified parameters were estimated for modified type 316LN and $9{\sim}12Cr-1Mo$ steels with chemical variations. Several sets of creep data were obtained by constant-load creep tests in $550-650^{\circ}C$ ranges. The relation parameters, m, $m^*$, C and $C^*$ were proposed and discussed for two alloy systems. In creep fracture mode, type 316LN steel showed domination of the intergranular fracture caused by growth and coalescence of cavities. On the other hand, the Cr-Mo steel showed transgranular fracture of the ductile type caused from softening at high temperature. In spite of the basic differences in creep fracture modes as well as creep properties, the M-G and its modified relations demonstrated linearity within the $2{\sigma}$ standard deviation. The value of the m parameter of the M-G relation was 0.90 in the 316LN steel and 0.84 in the Cr-Mo steel. The value of the $m^*$ parameter of the modified relation was 0.94 in the 316LN steel and 0.89 in Cr-Mo steel. The modified relation was superior to the M-G relation because the $m^*$ slopes almost overlapped regardless of creep testing conditions and chemical variations to the two alloy systems.

  • PDF