• Title/Summary/Keyword: base-metal

Search Result 1,589, Processing Time 0.028 seconds

LASER WELDING OF TI-NI SHAPE MEMORY ALLOY WIRE

  • Kim, Young-Sik;Kim, Jong-Do
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.139-144
    • /
    • 2002
  • Ti-50.9at%Ni wires were welded using pulsed YAG laser. The laser welded wires were tested for investigating the shape memo교 effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

A study of Tailored Blank Welding between dissimiliar materials and different thickness sheets by $CO_2$ Laser Beam ($CO_2$ 레이저빔에 의한 이종재질 및 이종두께의 Tailored Blank 용접에 관한 연구)

  • 황창선;김도훈;유병길;이경돈
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.42-51
    • /
    • 1999
  • This research was conducted as a fundamental study to apply tailored blank welding technique into automotive production process. The materials used in this study were 2.0mm thickness low carbon steel sheets and 1.2mm Zn-coated low carbon steel sheets. To ensure the reproducibility and to consider various factors, experiments were. conducted by applying Taguchi experimental method with 6 factors. Every welding process was repeated 3 times to offset the effect of uncontrolled factors. Elongation and LDH(Limited Dome Height)were measured to evaluate formability of specimens and Optical microscopy, XRD, SEM, and EDS analysis were performed to observe the microstructures and to determine the solidification mode in the weld. The elongation of specimen welded with optimum condition was 83% of base metal, and LDH was 84% of base metal. In case of laser treated specimen where Zn coating was removed, elongation was 85% of base metal, and LDH was 85% of base metal. In fusion zone, phases were consisted of quasi-polygonal ferrite, banitic ferrite, and martensite.

  • PDF

A Study on High Temperature Crack Growth Behavior in 2.25Cr-lMo Steel Weldments at $550^{\circ}C$ ($550^{\circ}C$에서의 2.25Cr-1Mo 강 용접부의 고온 균열성장 거동에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.278-284
    • /
    • 2001
  • Both creep deformation and creep crack growth experiments have been conducted on 2.25Cr-1Mo steel weldment in order to provided an information on residual life prediction of structural component weldment containing a crack. The stress exponent of creep deformation equation for the base metal and weldment at 823k were found to be 10.2 and 7.3, respectively. These two values could be assumed that dislocation climb processes are controlling the creep deformation of both materials. The creep rate of the weldment was very low, compared with that of base metal under the same applied stress. Whereas the creep crack growth rate of the weldment was almost twice higher than that of base metal under the fixed value of $C^*$. This may indicate that the weldment is stronger than the base metal in view of creep deformation and is brittle during creep crack growth due to the intrinsic microstructure of banite and relatively higher and Mn contents.

  • PDF

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향)

  • Jung, Byung-Hun;Kong, Jong-Pan;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

Fatigue Properties of Ti-Ni Shape Memory Alloy Wire Welded by Nd: YAG Laser

  • Kim, Y.S.;Kim, J.D.;Kil, B.L.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • The welded specimens were made by butt welding of the 2 wires of 50mm length using the pulsed YAG laser. The laser welded wires were tested for investigating the shape memory effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was Investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

Development of Schiff Base Column and Glow Discharge Detector for HPLC : Preliminary Study I (HPLC용 Schiff Base 컬럼과 Glow Discharge 검출기의 개발에 관한 기초연구 I)

  • Kang, Mi-Ra;Kim, Eun-Soo;Shin, Jung-Sook;Park, Hyun-Kook;Yang, Jung-Sung;Lee, Sang C.
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.265-272
    • /
    • 1995
  • Schiff base ligand columns and glow discharge detector have been developed for the trace analysis of metal ions desolved in water. Various types of hydrazide Schiff base ligands have been used and, additionally, they were examined as a filling material of a HPLC column. The hydrazide Schiff base ligands used were N, N'-oxalybis(salicylaldehydrazone) (OBSH), N, N'-malonylbis(salicylaldehydrazone) (MBSH), and N, N'-succinylbis(salicylaldehydrazone) (SBSH). A mixture of Schiff base ligand and poly(styrene divinylbenzene) was examined and it showed a smooth flow of solution. The OBSH-polymer column demonstrated different effluent factors for different metal ions. Metal ions in eluates were detected by Hollow Cathode Glow Discharge-Atomic Emission Spectrometry(HCGD-AES). HCGD-AES showed good sensitivity and selectivity. This is only the preliminary results of new OBSH-polymer column and glow discharge detector.

  • PDF

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

Effect of Coating Thickness on Microstructures and Tensile Properties in Yb:YAG Disk Laser Welds of Al-Si Coated Boron Steel (Al-Si 용융 도금된 보론강의 Yb:YAG 디스크 레이저 용접부의 미세조직과 인장성질에 미치는 도금두께의 영향)

  • Cao, Wei-Ye;Kong, Jong-Pan;Ahn, Yong-Nam;Kim, Cheol-Hee;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.66-75
    • /
    • 2013
  • In this study, the effect of coating thickness($20{\mu}m$ and $30{\mu}m$) on microstructure and tensile properties in Yb:YAG disk laser welds of Al-Si-coated boron steel (1.2mmt) was investigated. In the case of as welds, the quantity of ferrite was found to be higher in base metal than that in HAZ (Heat Affected Zone) and fusion zone, indicating, fracture occurrs in base metal, and the fracture position is unrelated to the coating thickness. Furthermore, yield strength, tensile strength of base metal and welded specimens showed similar behavior whereas elongation was decreased. On the other hand, base metal and HAZ showed existence of martensite after heat treatment, the fusion zone indicated the presence of full ferrite or austenite and ferrite during heat treatment ($900^{\circ}C$, 5min), After water cooling, austenite was transformed to martensite, and the quantity of ferrite in fusion zone was higher as compared with in base metal, resulting in sharply decrease of yield strength, tensile strength and elongation, which leads to fracture occured at fusion zone. In particular, results showed that because the concentration of Al was higher in 30um coating layer specimen than that of 20um coating specimen, after heat treatment, producing a higher quantity of ferrite was higher after heat treatment in the fusion zone; howevers, it leads to a lower tensile property.