• 제목/요약/키워드: base-metal

Search Result 1,589, Processing Time 0.033 seconds

Fatigue Crack Growth Characteristics on The Weld Joint of Bimaterial (이종재료 용접부의 피로균열진전 특성)

  • 권재도;김우현;박중철;배용탁;김중형
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.81-85
    • /
    • 1997
  • This paper was conducted the fatigue crack growth test on the base metal and weld joint of bimaterial(carbon-stainless steel), carbon steel and stainless steel. As the result, the fatigue crack growth rate of weld joint on the stainless-stainless steel is faster than stainless base metal, and weld joint on the carbon-carbon steel heat affected zone is slower than carbon base metal. And fatigue crack growth rate of carbon-stainless steel weld joint and heat affected zone is similar to the behavior of stainless base metal. In conclusion, weld joint of bimaterial is stable in the fatigue crack growth behavior.

  • PDF

A Study on the Fatigue Crack Growth Behavior of Titanium Welding Material (티타늄 용접재의 피로크랙 성장거동에 관한 연구)

  • 최병기;국중민
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.7-11
    • /
    • 2001
  • In this study, specimens were classified four welded specimens and a base metal to investigate fatigue life and crack growth rate of pure titanium welding materials, and Ti was used in turbine equipment of nuclear power generation, etc. The summarized results are as follows; 1) Specimen-2 was bigger 712% than base metal, when it was compared with other welding materials, 2) As the result of specimens data, specimen-2 crack behavior rate res lower 30 times than base metal, and so total fracture life was very influenced by it, 3) Notch tip of Specimen-2 was offsetted 6.7mm from boundary H.A.Z, and if formed 25% in total fracture length, 4) As the considering of da/dN and $\Delta$K, Paris' law is incongruous in this study, because fro inclines nsf on one date.

  • PDF

Examination on Fatigue Limit and Crack Growth Characteristic of SBHS700 Base Metal

  • Ono, Yuki;Kinoshita, Koji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1098-1106
    • /
    • 2018
  • The object of this study is to clarify fatigue limit and fatigue crack growth characteristic of SBHS700 base metal which is 780 MPa class steel. This study carried out the fatigue tests of SBHS700 base metal containing different defect size, and the fatigue limit was compared with that of the conventional steel. Test results indicate that the fatigue limit increased with decrease initial defect size, and can be precisely evaluated by using ${\sqrt{area}}$ parameter model. This paper also presents that crack growth characteristic was almost the same as that of the conventional steel from the observation of striations by using Scanning electron microscope and length of beach marks.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

Fatigue Crack Propagation Behavior of Steel Plate of Laser Welded Tailored Blank (테일러드 블랭크 레이저 용접 강판의 피로균열 전파 거동)

  • Han, Moon-Sik;Lee, Yang-Sub
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.120-126
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range$({\Delta}K)$ region and faster in high ${\Delta}K$ region than that of the base metal specimens.

Effect of Hot-Stamping on Mechanical Properties and Microstructures of CO2 Laser Welded Boron Steel coated with Al-Si layer (Al-Si 용융 도금된 보론강 CO2 레이저 용접부의 미세조직과 기계적 성질에 미치는 핫스탬핑 처리의 영향)

  • Oh, Myeonghwan;Kong, Jongpan;Shin, Hyeonjeong;Kwon, Minsuck;Jung, Byunghun;Kang, Chungyun
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • In this study, Al-Si coated boron steel(1.2 mm) were laser welded by $CO_2$ laser and hot-stamping was applied to the laser joints. Tensile properties and microstructures of the joints were investigated before and after hot-stamping. Tensile and yield strengths of the as welded specimen similar with base metal and fracture occurred base metal of boron steel. Although, in case of heat treated specimen, fracture occurred fusion zone that Al segregated zone near the bond line. These could be explained by the existence of ferrite, in the Al segregated zone near the bond line and base metal of boron steel. Before hot-stamping, hardness of base metal is lower than fusion zone and heat affected zone in spite of exist Al segregation zone($Fe_3$(Al,Si)). So fracture occurred base metal. Although, after hot-stamping, microstructure of base metal and welds zone transformed to martensite and bainite except in Al segregation zone near the bond line that $Fe_3$(Al,Si) transformed to a-ferrite. So fracture occurred Al segregation zone near the bond line.

  • PDF

Synthesis and Characterization of Schiff Base Metal Complexes and Reactivity Studies with Malemide Epoxy Resin

  • Lakshmi, B.;Shivananda, K.N.;Prakash, Gouda Avaji;Isloor, Arun M.;Mahendra, K.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.473-482
    • /
    • 2012
  • A novel malemide epoxy containing Co(II), Ni(II) and Cu(II) ions have been synthesized by curing malemide epoxy resin (MIEB-13) and Co(II), Ni(II) and Cu(II) complexes of macrocyclic bis-hydrazone Schiff base. The Schiff base was synthesized by reacting 1,4-dicarbnyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol. The Schiff base and its Co(II), Ni(II) and Cu(II) complexes have been characterized by elemental analyses, spectral (IR, $^1H$ NMR, UV-vis., FAB mass, ESR), thermal and magnetic data. The curing reaction of maleimide epoxy compound with metal complexes was studied as curing agents. The stability of cured samples was studied by thermo-gravimetric analyses and which have excellent chemical (acid/alkali/solvent) and water absorption resistance. Further, the scanning electron microscopy (SEM) and definitional scanning colorimetric (DSC) techniques were confirmed the phase homogeneity of the cured systems.

A Study on the Impact Toughness and Microstructure change for High Nitrogen TiN Steel Alloy with Welding Heat Input. (용접 입열량에 따른 고질소 TiN 강재의 용접부 충격인성 및 미세조직 변화에 관한 연구)

  • Gwon Sun Du;Lee Gwang Hak;Park Dong Hwan
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.123-124
    • /
    • 2004
  • This study was investigated on the impact toughness and microstructure of welded metal and heat affected zone for Hi Nitrogen TiN Steel. With welding procedures, welding heat input applied were 30, 79 and 264 kJ/cm. TiN steel has shown very small prior austenite grain size for all the welding heat input applied, which was considered to result from the effect of TiN particles. In case of single SAW and EGW welding, the dilution rate of base metal into the weld was not high, resulting that there were no significant effects of base metal chemical composition on the mechanical properties of welds. However, TSAW with double Ypreparation carried very high dilution rate so that TiN steel has impaired the toughness of weld metal because N content in the weld was increased through the dilution of base metal.

  • PDF

Microstructure and Mechanical Property of Brazed Joint in Duplex Stainless Steel, UNS32550 (브레이징한 2상 스테인리스강 UNS32550의 미세조직 및 기계적 특성)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2003
  • The bonding phenomena and mechanical property of duplex stainless steel during brazing have been investigated. The UNS32550 was used for base metal, and the MBF50 was used for insert metal. Brazing was carried out under the various conditions (brazing temperature : 1473K, 1498K, holding time : 0∼1.8ks). There were various microconstituents in the bonded interlayer because of reaction between liquid insert metal and base metal. In the early stage of brazing, BN is formed in the bonded interlayer and base metal near the bonded layer. Cr made is formed in the bonded interlayer. The amount of BN and Cr nitrides decrease with the increase of bonding temperature and holding time. Superior shear strength of 550MPa is obtained by restraining the formation of nitrides. (Received January 17, 2003)

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF