• Title/Summary/Keyword: base substitution

Search Result 133, Processing Time 0.024 seconds

The Effect on Latent Hydraulic Property of the Blast-furnace Slag by Alkali Activator (알칼리 자극제가 고로슬래그의 잠재수경성에 미치는 영향)

  • Lee, Seung-Han;Park, Jeong-Seob;Jung, Yong-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.929-934
    • /
    • 2001
  • This study aimed to examine the cause of latent hydraulic property manifestation of ground granulated blast-furnace slag(GGBFS) using different alkali activators in pH, type and quantity. According to the experimental result, the higher pH value accelerated lastly latent hydraulic property and the early stage strength of GCBFS was ranked as activators with the higher pH, in an order of NaOH, $Ca(OH)_{2}$ and $Na_{2}$$Co_{3}$. Also, NaOH had accelerated latent hydraulic property of GGBFS, which had 40~50% of the 3 and 7 days compressive strength of base mortar in case of using 10% of powder-weight. In the case of 30% of GGBFS substitution with annexing 2.5% $Ca(OH)_{2}$, the compressive strength on the 3 and 7 days of the early-age, was increased to 5~10% than that of the same admixture with no activator. With annexing 5.0% $Ca(OH)_{2}$, the strength was increased to 10~20%. Although activator NaOH was effective on the manifestation of latent hydraulic property, it caused cement mortar compressive strength decrease by enlarging pore diameter.

  • PDF

Characteristics of Surface Hardened Press Die Materials by CO2 Laser Beam Irradiation (CO2 레이저 빔 조사에 의한 프레스 금형재료의 표면경화 특성)

  • Yang, Se-Young;Choi, Seong-Dae;Choi, Myeong-Soo;Jun, Jae-Mok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently, the technology of surface treatment is being more important which affects the material cost reduction and substitution to the expensive material. The material used for the mechanical processing should have not only high intensity, but also strength toughness, wear resistance and corrosion resistance. In order to increase the durability and have better quality of the parts using such kind of tooling material, various kinds of research of the surface hardening through many kinds of heat resources is being done and practically applied. In this study, the characteristics of hardening surface zone for high strength of the press die material through laser beam irradiation are researched. In this study, it is experimentally observed by the status of the surface morphology, tensile strength, the hardness distribution of the base metal and wear condition by the surface hardness pattern by the laser beam based on the process parameters of $CO_2$ laser by using SM45C and STD11 used for press tool. Through this research, the characteristics of surface hardened zone for high strength of the thin metal by laser beam irradiation is done.

DNA Damage Induced by New Pophyrins of Different Chemical Structure

  • Galina Hovhannisyan;Samvel Haroutiunian;Kristina Margaryan;Robert Ghazaryan;Rouben Aroutiounian
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.379-382
    • /
    • 2005
  • The new cationic meso-substituted N-quarternized 4-pyridylporphyrins and their metal derivatives were synthesized as novel chemotherapeutics. The level of DNA damage induced by porphyrins TOBut4PyP, TOBut4PyP, TOEt4PyPMn and TOBut4PyPMn and its dependence on the chemical structure of compounds were analyzed by the Comet-assay. On the base of data obtained, the investigated porphyrins may be arranged by their genotoxic activity in the following order: TOEt4PyP>TOEt4PyPMn>TOBut4PyP>TOBut4PyPMn. Thus, i) the genotoxicity of the Mn-derivatives of TOEt4PyP and TOBut4PyP is higher than the original porphyrins and ii) the genotoxicity of TOEt4PyP and TOEt4PyPMn is increased after substitution of a butyl radical for ethyl one. The applied Comet-assay permits to reveal the dependence of DNA damage induction on the chemical structure of porphyrins.

Griscelli syndrome type 2: a novel mutation in RAB27A gene with different clinical features in 2 siblings - a diagnostic conundrum

  • Mishra, Kirtisudha;Singla, Shilpy;Sharma, Suvasini;Saxena, Renu;Batra, Vineeta Vijay
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.2
    • /
    • pp.91-95
    • /
    • 2014
  • Griscelli syndrome type 2 (GS2) is a rare autosomal recessive disease caused by mutations in the RAB27A gene. It is characterized by cutaneous hypopigmentation, immunodeficiency, and hemophagocytic lymphohistiocytosis. We describe 2 brothers who had GS2 with clinically diverse manifestations. The elder brother presented with a purely neurological picture, whereas the younger one presented with fever, pancytopenia, hepatosplenomegaly, and erythema nodosum. Considering that cutaneous hypopigmentation was a common feature between the brothers, genetic analysis for Griscelli syndrome was performed. As the elder sibling had died, mutation analysis was only performed on the younger sibling, which revealed a novel homozygous mutation in the RAB27A gene on chromosome 15 showing a single-base substitution (c.136T>A p.F46I). Both parents were heterozygous for the same mutation. This confirmed the diagnosis of GS2 in the accelerated phase in both siblings. The atypical features of GS2 in these cases are a novel mutation, isolated neurological involvement in one sibling, association with erythema nodosum, and 2 distinct clinical presentations in siblings with the same genetic mutation.

Investigation of Gold and Silver Nanoparticles as Acid-base pH Indicators and Their Transition pH Ranges

  • Jung, Byoung Gue;Jo, Jihee;Yu, Jin Won;Lim, Jong Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3595-3600
    • /
    • 2014
  • Monitoring of pH, especially under highly alkaline conditions, is necessary in various processes in the industrial, biotechnological, agricultural, and environmental fields. However, few pH indicators that can function at highly alkaline levels are available, and most of which are organic-based pH indicators. Several years ago, it was reported that gold nanoparticles prepared using trisodium citrate dihydrate were rapidly aggregated at pH values higher than ~12.7. A shift of surface plasmon resonance for such aggregated gold nanoparticles can be applied to pH indicators, allowing for the substitution of traditional organic-based pH indicators. The most important characteristic of pH indicators is the transition pH range. Herein, gold and silver nanoparticles are prepared using different reducing agents, and their transition pH ranges are examined. The results showed that all nanoparticles prepared in this study exhibit similar transition pH ranges spanning 11.9-13.0, regardless of the nanoparticle material, reducing agents, and concentration.

Depurination of dA and dG Induced by 2-bromopropane at the Physiological Condition

  • Thapa, Pritam;Sherchan, Jyoti;Karki, Radha;Jeong, Tae-Cheon;Lee, Eung-Seok
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.224-229
    • /
    • 2007
  • Depurination, the release of purine bases from nucleosides by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Although, cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a cleaning solvent in electronics industry. But, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. We observed massive depurination after incubation of 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) with the excess amount 2-BP at the physiological condition (pH 7.4, $37^{\circ}C$), which were analyzed by HPLC and LC-MS/MS. In addition, time and dose response relationship of depurination in dA and dG induced by 2-BP at the physiological condition were investigated.

Effect of $M_2O_3$ on the Sinterbility and Electrical Conductivity of $ZrO_2(Y_2O_3)$ System (I): Ceramics of the:$ZrO_2-Y_2O_3-Bi_2O_3$ System ($ZrO_2(Y_2O_3)$ 계 세라믹스의 소결성과 전기전도도에 대한 $M_2O_3$의 영향 (I):$ZrO_2-Y_2O_3-Bi_2O_3$계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 1986
  • Yttria-bismuth-stabilized zirconia was investigated with respect to the amount of $Bi_2O_3$ addition in the ran-ge of 0.5~5mol% to the base composition of $(ZrO_2)_{0.92}(Y_2O_3)_{0.08}.Bismuth was introduced into the ma-terial with $Bi_2O_3-SiO_2$ glasses in order to reduce the evaporation of components. The sinterbility evaporation of components phase formation and microstructure were evaluated depending on the amount of $Bi_2O_3-SiO_2$ glass addition. Two probe A. C conductivity measurement was subjected to all the specimens and the result was discussed on the possible substitution of $Bi^{3+}$ for $Zr^{4+}$ and interistial $Si^{4+}$ in the fluorite structure of zirconia crystal there-upon the possible change in the capability of oxygen transference within the material. It was found that the addition of $Bi_2O_3$ could improve the sinterbility of material very much while not so much.oxygen sensing material suitable for relative low temperature firing.

  • PDF

Genetic Toxicity Test of Emodin by Ames, Micronucleus, Comet Assays and Microarray Analysis Showing Differential Result

  • Go, Seo-Y.;Kwon, Kyoung-J.;Park, Sue-N.;Sheen, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.192-198
    • /
    • 2007
  • Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a major constituent of rhubarb. Although it has been claimed to have a wild spectrum of therapeutic value, its side effects, especially in human kidney cells have not been well characterized. In this study, we have carried out in vitro genetic toxicity test of emodin and microarray analysis of differentially expressed genes in response to emodin. The result of Ames test showed mutations with emodin treatment in base substitution strain TA1535 both with and without exogenous metabolic activation. Likewise, emodin showed mutations in frame shift TA98 both with and without exogenous metabolic activation. The result of COMET assay in L5178Y cells with emodin treatment showed DNA damage both with and without exogenous metabolic activation. Emodin did not increase micronuclei in CHO cells both with and without exogenous metabolic activation. 150 Genes were selected as differentially expressed genes in response to emodin by microarray analysis and these genes would be candidate biomarkers of genetic toxic action of emodin.

Genetic Toxicity Test of Methylcarbamate by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Kwon, Kyoung-J.;Go, Seo-Y.;Park, Sue-N.;Sheen, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • Carbamates have excellent insecticidal activities against a broad spectrum of insects. They possess knocking-down, fast-killing, and systemic effects, however, they are toxic to mammals. In this study, we have carried out in vitro genetic toxicity test of methylcarbamate and microarray analysis of differentially expressed genes in response to methylcarbamate. Methylcarbamate did not show mutations in base substitution strain TA1535 both with and without exogenous metabolic activation. Methylcarbamate did not show mutations in frame shift TA98 both with and without exogenous metabolic activation. Methylcarbamate showed DNA damage based on single cell gel/comet assay in L5178Y cells both with and without exogenous metabolic activation. Methylcarbamate did not increase micronuclei in CHO cells both with and without exogenous metabolic activation. Microarray analysis of gene expression profiles in L5178Y cells in response to methylcarbamate selected differentially expressed 132 genes that could be candidate biomarkers of genetic toxic action of methylcarbamate.

Kinetics and Mechanism of Nucleophilic Substitution Reaction of 4-Substituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures

  • Kim, Young-Sun;Choi, Ho-June;Yang, Ki-Yull;Park, Jong-Keun;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3279-3282
    • /
    • 2010
  • The reaction rates of 4-X-2,6-dinitrochlorobenzenes (X = $NO_2$, CN, $CF_3$) with Y-substituted benzylamines (Y = p-$OCH_3$, p-$CH_3$, H, p-Cl) in MeOH-MeCN mixtures were measured by conductometry at $25^{\circ}C$. It was observed that the rate constant increased in the order of X = $NO_2$ > CN > $CF_3$ and in the order of Y = p-$OCH_3$ > p-$CH_3$ > H > p-Cl. When the solvent composition was varied, the rate constant increased in the order of 100% MeOH < 50% (v/v) MeOH-MeCN < 100% MeCN. These results may be ascribed to the formation of hydrogen bonds between the alcoholic hydrogen and nitrogen of benzylamines in groud state (GS). We conclude that the reaction takes place via $S_NAr$ base on the transition state parameters ${\rho}x$, ${\rho}Y$, $\beta_{nuc}$, and solvent effects.