• Title/Summary/Keyword: base plate thickness

Search Result 109, Processing Time 0.021 seconds

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces

  • Li, Yan-Wen;Yam, Michael C.H.;Zhang, Ping;Ke, Ke;Wang, Yan-Bo
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.611-628
    • /
    • 2022
  • Energy-dissipative rocking (EDR) columns are a class of seismic mitigation device capable of dissipating seismic energy and preventing weak-story failure of moment resisting frames (MRFs). An EDR consists of two hinge-supported steel columns interconnected by steel dampers along its height. Under earthquakes, the input seismic energy can be dissipated by plastic energy of the steel dampers in the EDR column. However, the unrecoverable plastic deformation of steel dampers generally results in residual drifts in the structural system. This paper presents a proof-of-concept study on an innovative device, namely self-centring energy-dissipative rocking (SC-EDR) column, aiming at enabling self-centring capability of the EDR column by installing a set of shape memory alloy (SMA) tension braces. The working mechanism of the SC-EDR column is presented in detail, and the feasibility of the new device is carefully examined via experimental and numerical studies considering the parameters of the SMA bar diameter and the steel damper plate thickness. The seismic responses including load carrying capacities, stress distributions, base rocking behaviour, source of residual deformation, and energy dissipation are discussed in detail. A rational combination of the steel damper and the SMA tension braces can achieve excellent energy dissipation and self-centring performance.

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

Explosion Bulge Test Underwater of 800MPa Grade Pre-heat Free Welding Plate (800MPa급 무예열 용접 판재의 수중 폭파변형시험)

  • Park, Tae-Won;Song, Young-Beum;Kim, Jin-Young;Yang, Sung-Ho;Park, Chul-Gyu;Seo, Jun-Suck;Kim, Hee-Jin
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.63-69
    • /
    • 2010
  • The pre-heat free consumables for GMAW, SAW and FCAW processes that matche with the Cu-bearing PFS-700 steel which has yield strength over 700MPa were developed and evaluated to see the suitability in military such as submarine and battle ship. Explosion Bulge Test underwater was developed and applied to see the reliability of welded structure. All welding was conducted without pre-heat before welding, the interpass temperature was below $150^{\circ}C$ for all welding conditions. Tensile strength for the weld metal in GMAW, SAW and FCAW process is 887MPa, 875MPa and 813MPa, respectively, these values are similar to the base metal of PFS-700 steel of 838MPa. EBT results in GMAW, SAW and FCAW show 14.0%, 14.02% and 15.9% reduction of thickness without generation of crack, respectively and stand-off distance was set up properly to have over 14.0% reduction of thickness. Through EBT results, the developed new consumables are applicable to the weapon systems such as submarine and battle ship.

Explosion Bulge Test in Underwater of 800MPa Grade Pre-Heat Free Welding Plate (800MPa급 무예열 용접 판재의 수중 폭파변형시험)

  • Park, Tae-Won;Song, Young-Bum;Kim, Jin-Young;Yang, Seong-Ho;Hong, Sung-Suk;Shim, In-Ok;Park, Chul-Kyu;Kim, Hee-Jin
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.63-63
    • /
    • 2010
  • The pre-heat free consumables for GMAW, SAW and FCAW processes that matches the Cu-bearing PFS-700 steel which has yield strength over 700MPa were developed and evaluated to see the suitability in military such as submarine and battle ship. Explosion bulge test in underwater was developed and applied to see the reliability of welded structure. All welding was conducted without pre-heat before welding, the interpass temperature was below $150^{\circ}C$ for all welding conditions. Tensile strength for the weld metal in GMAW, SAW and FCAW process is 887MPa, 875MPa and 813MPa, respectively, these values are similar to the base metal of PFS-700 steel of 838MPa. EBT results in GMAW, SAW and FCAW show 14.0%, 14.02% and 15.9% reduction of thickness without generation of crack, respectively and stand-off distance was set up properly to have over 14.0% reduction of thickness. Through EBT results, the developed new consumables are applicable to the weapon systems such as submarine and battle ship.

  • PDF

Analysis of Primary Breakup Characteristics Depending on the Boss and Deflector Dimension of Fire Sprinkler Head using LES-VoF (LES-VoF를 이용한 소방용 스프링클러 헤드의 보스 및 디플렉터 치수에 따른 1차 분열 특성 분석)

  • Kim, Taehoon
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.127-134
    • /
    • 2021
  • Fire sprinkler initial spray was analyzed by Large eddy simulation (LES) and Volume of Fluid (VoF) integrated method. The IsoAdvector geometric VoF was used to identify the liquid-gas interface clearly even with the large Courant-Friedrichs-Lewy number. To reduce the computational costs, sector meshes and Adaptive Mesh Refinement up to level 3 were used. Base mesh size was 1 mm, which is roughly equivalent to the initial sprinkler droplet. Top surface radius of boss and deflector size were modified to investigate the effects of sprinkler head design on primary breakup process. When top surface radius of boss was increased, vertical liquid sheet was formed. This phenomenon reduced the sheet breakup radius, sheet thickness and velocity. Due to reduced liquid sheet thickness, a large amount of ligaments was created from the liquid sheet. As a result, there was a dramatic decrease in volume per surface area, indicating an increase in breakup process. Spray pattern viewed in radial direction also changed when top surface radius of boss increased. When top surface radius of boss was increased, a T-shaped pattern was observed while a V-shaped pattern was observed in all other cases. When the deflector size increases, the spray pattern remains V-shaped, even if the top surface radius of boss increased. Further studies on promoting atomization of the water supplied to the lower part of the sprinkler head in the T-shape pattern should be conducted.

A Prediction of the Penetration Depth on CO2 Arc Welding of Steel Sheet Lap Joint with Fillet for Car Body using Multiple Regression Analysis Technique (자동차용 박강판 겹치기 이음부의 CO2 아크 용접에서 다중회귀분석기법을 이용한 용입깊이 예측에 대한 연구)

  • Lee, Kyung-Min;Sim, Hyun-Woo;Kwon, Jae-Hyung;Yoon, Buk-Dong;Jeong, Min-Ki;Park, Moon-Soo;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.59-64
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body are spot welding and $CO_2$ welding are used in a small part. In production field, $CO_2$ welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ welding process frequently. But $CO_2$ welding process should be used at robot interference parts and closed parts where spot welding couldn't. Because of the 0.65mm ~ 2.0mm thickness steel sheet were used in the automotive industry, poor quality of welding area such as burn through and under fill were happened frequently in $CO_2$ process. In this paper, we will study about the penetration depth which gives a huge impact on burn through changing a degree of base metal, welding position and torch angle. Voltage, current and welding speed were fixed but degree of base metal, welding position and torch angle were changed. And Cold- Rolled(CR) steel sheet was used. Penetration depth was analysed by multiple regression analysis to derive approximate calculations. And reliability of approximate calculations were confirmed through additional experiments. As the results of this research, we confirmed the effect of torch and plate angle to bead shape. And we present a possibility that can simulate more accurate to weld geometry, as deduced the verification equations that has tolerance of less than 21.69%.

Experimental Research on the Effect of the Number of Layers by Overlay Welding of Monel-Clad Pipe on Weldability (모넬(Monel)-Clad 파이프의 오버레이 용접 적층수가 용접성에 미치는 영향에 관한 실험적 연구)

  • Choi, Hyeok;Park, Joon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.42-50
    • /
    • 2016
  • Overlay welding affects the chemical components and weld hardness by dilution of the lamination layer thickness, which determines the surface properties. This study experimentally investigates different numbers of layers for overlay welding monel materials, which are anti-corrosion materials. The Fe content, weldability of the base metal and monel materials, hardness, and surface flatness were examined. Each evaluation was carried out after overlay welding with three layers on the base material and pipe base material of the plate. The Fe content was evaluated by analyzing the constituents of each layer. The Fe content was satisfactory in the three layers. The weldability of the laminate specimens was evaluated by a bending test. The hardness and bead flatness of the laminate specimens were evaluated by micro Vickers and 3D measurements. The hardness was highest in the heat-affected zone with one layer, and it decreased with increasing lamination. In the case of bead flatness, there is a sharp difference in the deviation with increasing numbers of laminations, which should be considered carefully.

Investigation of the Coil Deforamtion of the Gas Turbine Generator Rotor Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 발전기 로터의 계자권선 변형 해석)

  • Yun, W.N.;Park, H.K.;Kang, M.S.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.95-101
    • /
    • 2009
  • The generator for gas turbine power generation consists of the rotor which generates magnetic field, the winding coil which is the path for the field current and the wedge and retaining ring which prevents the radial movement of the coil. Relatively severe deformation was observed at the coil end section during the inspection of the generator for peaking-load operation, and the thermal-electricity and the centrifugal force were evaluated by the simple modeling of the windings to find the cause. But the simulation stress was not sufficient to induce the coil plastic deformation. The analysis result seems to be applicable to the base-load generators which runs continuously without shut down up to a year, but there had been more deformation than simulated for the generator which is started up and shut down frequently. The cause of the coil deformation was the restriction of the expansion and shrinkage. The restriction occurs when the winding coil shrinks, and the stress overwhelms the yield stress and cause the plastic deformation. The deformation is accumulated during the start-ups and shut-downs and the thermal growth occurs. The factors which induce the coil restriction during the expansion and shrinkage should be reduced to prevent the unallowable deformation. The resolutions are cutting off the field current earlier during the generator shut-down, modifying the coil end section to remove the stress concentration and making the insulation plate inserted between the coil end section and the retaining ring have the constant thickness.

  • PDF

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF