• Title/Summary/Keyword: base paper grammage

Search Result 5, Processing Time 0.019 seconds

Fold Cracking of High Grammage Coated Paper Depending on Pulp Composition and Structure of Base Paper (도공원지의 원료 조성 및 구조에 따른 고평량 도공지의 접힘 터짐)

  • Sim, Kyujeong;Youn, Hye Jung;Oh, Kyudeok;Lee, Hak Lae;Yeu, Seung Uk;Lee, Yong Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.38-45
    • /
    • 2015
  • Fold cracking is one of quality troubles of coated papers. In this study, the fold cracking of high grammage ($250g/m^2$) coated paper made with the different pulp composition and layer structure of base paper was investigated. The single layered, high grammage base paper was prepared by mixing of hardwood and softwood bleached kraft pulp fibers with the different ratios. The high grammage coated paper showed the higher fold cracking than low grammage coated paper because of the increase in thickness. The increase in the content of softwood pulp fibers reduced the fold cracking in the case of high grammage coated paper. When the creasing process was conducted before folding process, the fold cracking of coated paper decreased. By manufacturing the base paper with multiply structure, the fold cracking of coated paper could be reduced significantly, especially when the BCTMP and OCC were used as a middle layer and the creasing process was carried out. The delamination of layers in base paper affected the fold cracking positively.

Effect of Latex Particle Size, Base Paper Grammage and Coating Color Concentration on Printing Quality of Coated Paper (Latex 입경과 원지 평량 및 칼라농도가 도공지의 인쇄품질에 미치는 영향)

  • Lee, Y.K.;Yoo, S.J.;Cho, B.U.;Kim, Y.S.;Nam, B.K.;Choi, S.M.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • The effects of latex particle size, basis weight of base paper and coating color concentration on the printing quality of coated paper were investigated. Coating colors were prepared with five types of latexes having different particle sizes. Coated papers were produced with high solid coating colors and with low solid coating colors in a industrial coater, respectively. In high solid coating colors, rheology modifier was used and GCC content was high. It was concluded that, in order to control binder migration and hence print mottle, latex particle sizes shall be controlled as well as formation, sizing degree and roughness of basis paper.

Environmentally Friendly Moisture-proof Paper with Superior Moisture Proof Property (I) -Properties of Moisture Proof Chemicals- (방습 효과가 우수한 환경친화적 방습지(제1보) -방습제의 특성-)

  • 유재국;조욱기;이명구
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2001
  • The function of the moisture-proof paper is to prevent moisture from adsorbing into the packed goods. Water-vapor transmission rate of the moisture-proof paper should be less than 100g/$m^2$.24hr and the optimum rate would be less than 50g/$m^2$.24hr. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. The purpose of this paper was to make moisture-proof paper using the mixture of SB latex and wax emulsion which was recyclable and environmentally friendly. Water vapor transmission rate showed less than 50g/$m^2$.24hr in mixture ratio of 85:15, 87:13, 90:10. Especially the mixture ratio of 87:13 showed the most favorable water-vapor transmission rate. However, the moisture-proof layer was destroyed slightly by folding in packing. It has been observed that there was no close relationship between water-vapor transmission rate of the moisture-proof paper and grammage of the base paper, but the density of base paper had influenced on water vapor transmission rate. It was also observed that the moisture-proof paper could be recycled. The moisture-proof paper was similar to base paper in degree of the pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particles which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of both moisture-proof paper and base paper after pulping were measured to examine the fiber bonding, and no significant difference in physical properties was observed.

  • PDF

Design of the Coated Layer Suitable with Conductive Ink for RFID(II) - Effect of coating color components on the surface resistance of conductivity ink - (RFID용 전도성 잉크에 적합한 도공층 설계 (제1보) -도공액 성분에 따른 전도성잉크의 표면저항의 변화-)

  • Jung, Hae-Sung;Kim, Chang-Geun;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • The conventional coated paper has many functional problems for printed RFID tag. This study was carried out in order to evaluate the effect of coating color components on conductivity of printed coated paper. It has been well known that the efficiency of printed RFID tag is influenced by surface properties of substrate. The required properties for suitable substrate of printed RFID tag are high smoothness and waterproof property. In this study high grammage base paper surface sized with PVA was used. Coated paper was manufactured with five different formulations. Types of coating pigments and dosage of latex were varied. It was obtained high smoothness and also less binder demand with clay than GCC. On the other hand, suitable surface resistance and smoothness of coated paper for RFID tag was obtained with 20% of latex. Besides it shows the possibility of using coated paper for printed RFID tag.