• Title/Summary/Keyword: base heating

Search Result 256, Processing Time 0.029 seconds

Production Biodiesel via In-situ Transesterification from Chlorella sp. using Microwave with Base Catalyst

  • Kalsum, Ummu;Kusuma, Heri Septya;Roesyadi, Achmad;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.773-778
    • /
    • 2018
  • In-situ transesterification of microalgae lipids using microwave irradiation has potential to simplify and accelerate biodiesel production, as it minimizes production cost and reaction time by direct transesterification of microalgae into biodiesel with microwave as a heating source. This study was conducted to research the effect of microwave irradiation with in-situ transesterification of microalgae under base catalyst condition. The process variables (reaction time, solvent ratio, microwave power) were studied using 2% of catalyst concentration. The maximum yield of FAME was obtained at about 32.18% at the reaction time of 30 min with biomass-methanol ratio 1:12 (w/v) and microwave power of 450 W. The GC MS analysis obtained that the main component of FAME from microalgal oils (or lipids) was palmitic acid, stearic acid and oleic acid. The results show that microwaves can be used as a heating source to synthesize biodiesel from microalgae in terms of major components resulting.

PREDICTION OF AERODYNAMIC HEATING ON A SUPERSONIC MISSILE (초음속 유도탄 공력가열 예측)

  • Sun, Chul;Ahn, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.134-137
    • /
    • 2007
  • Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.

  • PDF

Causal Knowledge Integration Method for Product Design Simulation (제품 디자인 시뮬레이션을 위한 인과 지식 통합 방법 개발)

  • Kim, Yun Seon;Kwon, Ohbyung
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.85-95
    • /
    • 2014
  • Simulation for product design requires a lot of causal knowledge. Hence, knowledge integration is required for obtaining a new knowledge from existing knowledge. For example, a user requests knowledge for the heating cup. However, the knowledge base only has knowledge for heating and cup, not heating cup. At his situation, knowledge integration can generate a new heating cup knowledge from existing heating and cup knowledge. Therefore, the user can obtain the knowledge for heating cup. Hence, this study aims to propose a novel knowledge integration method for product design.

Development of Knowledge-based Method to Automatically Derive the Deformation Estimation Formula due to Line Heating (선상가열 변형예측식 자동 산출을 위한 지식기반 방법의 개발)

  • Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.92-99
    • /
    • 2010
  • For the last couple of decades many studies have been carried out to find out solutions to improve the effectiveness and productivity of the plate forming process. The practical way for the automation of the plate forming process has not been, however, developed yet. Since the characteristics of heating machines may be different form each other, it is necessary to investigate the thermal deformation characteristics of the heating machine to be used in the automation system. And their characteristics may be updated as new information about thermal deformation by heating is accumulated. In this paper, data base system has been constructed based on the results of experiments and numerical analyses, which will be used in deriving the deformation estimation formula. The computer code which can automatically derive the deformation estimation formula has been also developed. This paper also illustrates how the formula is updated as experimental data are added. From the present findings, it can be said that the automatic deriving procedure may be important in the automated plate forming system since the heating line information to be generated must be directly influenced by the deformation estimation formula.

Derivation of Simplified Formulas to Predict Deformations of Plate in Steel Forming Process with Induction Heating (유도가열을 이용한 강판성형공정에서 변형량 예측을 위한 계산식 유도)

  • Bae, Kang-Yul;Yang, Young-Soo;Hyun, Chung-Min;Won, Seok-Hee;Cho, Si-Hoon
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.58-64
    • /
    • 2007
  • Recently, the electro-magnetic induction process has been utilizing to substitute the flame heating process in shipyard. However, few studies have been performed to exactly analyze the deformation mechanism of the heating process with mathematical model. This is mainly due to the difficulty of modeling the inductor travelling on plate during the process. In this study, heat flux distribution of the process is firstly numerically analysed with the assumption that the process has a quasi-stationary state and also with the consideration that the heat source itself highly depends on the temperature of base plate. With the heat flux, the thermal and deformation analyses are then performed with a commercial program for 34 combinations of heating parameters. The deformations obtained and heating parameters are synthesized with a statistical method to produce simplified formulas, which easily give the relation between the heating parameters and deformations. The formulas are well compared with results of experiment.

Heating & Cooling Energy Performance Analysis of an Office Building according to SHGC level of the Double & Triple Glazing with Low-e Coating (이중 및 삼중 로이창호의 일사획득에 따른 사무소건물의 냉난방에너지 성능분석)

  • Kim, Hyo-Joong;Park, Ja-Son;Shin, U-Cheul;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.90-95
    • /
    • 2008
  • An SHGC(Solar Heat Gain Coefficient) is a determinant of total flux of solar radiation coming indoor and a critical factor in evaluating heating and cooling load. U-value represents heat loss while SHGC denominates heat gain. Recently, windows with high solar gain, mid solar gain or low solar gain are being produced with the development of Low-E coating technology. This study evaluated changes in energy consumption for heating and cooling according to changes in SHGC when using double-layered Low-E glass and triple layered Low-E glass in relation to double layered clear glass as base glass. An Office was chosen for the evaluation. For deriving optical properties of each window, WINDOW 5 by LBNL, an U.S. based company. and the results were analyzed to evaluate performance of heat and cooling energy on anannual basis using ESP-r, an energy interpretation program. Compared to the energy consumption of the double layered clear glass, the double layered Low-E glass with high solar gain consumed $69.5kWh/m^2,yr$, 9% more than the double layered clear glass in cooling energy. The one with mid solar gain consumed $63.1kWh/m^2,yr$, 1% less than the base glass while the one with low solar gain consumed $57.6kWh/m^2,yr$, 10% less than the base glass. When it comes to tripled layered glass, the ones with high solar showed 2% of increase respectively while the one with mid solar gain and low solar gain resulted 5% and 11% in decrease in energy consumption due to low acquisition of solar radiation. With respect to cooling energy. it was found that the lower the SHGC. the less energy consumption becomes.

  • PDF

The effects of PWHT on the toughness of weld HAZ in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열 영향부의 인성에 미치는 후열처리의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.55-64
    • /
    • 1995
  • A study was made to examine the effects of postweld heat treatment(PWHT) on the toughness and microstructures in the weld heat affected zone(HAZ) of Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulate the weld HAZ. The details between toughness and PWHT of HAZ were studied by impact test, optical microscopy(O.M.), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC). The decrease of HAZ toughness in single thermal cycle comparing to base plate is ascribed to the coarsed-grain formed by heating to 1350.deg.C. The increase of HAZ toughness in double thermal cycle comparine to single thermal cycle is due to the fine ferrite(.alpha.) grain transformed from austenite(.gamma.)formed by heating to .alpha./.gamma. two phase region. Cu precipitated during aging for increasing the strength of base metal is dissolved during single thermal cycle to 1350.deg.C and is precipitated little on cooling and heating during subsequent weld thermal cycle. It precipitates by introducing PWHT. Thus, the decrease of toughness in triple thermal cycle of $T_{p1}$ = 1350.deg.C, $T_{p2}$ = 800.deg.C and $T_{p3}$ = 500.deg.C does not occur owing to the precipitation of Cu. The behaviors of Cu=precipitates in HAZ is similar to that in base plate. PWHT at 550.deg.C shows highest hardness and lowest toughness, whereas PWHT at 650.deg.C shows reasonable toughness, which improves the toughness of as-welded state.state.

  • PDF

Aerodynamic Problems of Launch Vehicles

  • Chou, Kyong-Chol
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.5-21
    • /
    • 1984
  • The airflow along the surface of a launch vehicle together with base flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  • PDF

Effects of heating rate on the bonded interlayer in base metal powder mixture used transient liquid phase diffusion bonded Ni-base superalloy (모재 분말 혼합 삽입재를 이용한 니켈기 초내열합금의 천이액상확산접합에 있어서 가열속도가 접합부에 미치는 영향)

  • 김성욱;장중철;김재철;이창희
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.48-50
    • /
    • 2004
  • TLP 접합 공정에서 모재와 삽입금속 사이에서의 확산을 통하여 액상 삽입금속은 고온에서 등온으로 유지 시 등온 응고된다. D.S.Duvall은 느린 가열시 매우 빠른 속도로 가열 시 보다 낮은 온도에서 dissolution이 완료되고 응고가 발생할 것으로 예상하였다. (중략)

  • PDF

A Case Study for Energy Consumption Characteristics of High School Facilities in Seoul (서울지역 고등학교 건물의 에너지소비특성에 관한 사례분석)

  • Kim, Sung-Bum;Oh, Byung-Chil;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.61-69
    • /
    • 2016
  • In this study, we analyzed five-year(2011~2015) data for D high school in Seoul area to analyze energy consumption characteristics in high school. The results are summarized as follows. (1) In the result of comparison analysis about 2015 energy consumption by usage, based on primary energy, 18% of energy was consumed in cafeteria, and 82% was consumed in main building. In the case of main building, base and constant load excepting hot water supply in restroom took 40%, heating including freeze protection took 20%, hot water supply in restroom took 14%, and cooling took 8% in order. (2) In the 2015 total energy consumption in D high school based on primary energy, heating energy takes 28%. The range and limit of energy savings coming from the reinforcement of insulation and window performance could be estimated. (3) To introduce new & renewable energy system in high school, electricity-based system is suitable than heat-based system because usage of electric energy is larger than that of heat energy in high school. (4) Five-year energy consumption unit according to heating degree-day showed a linearly increasing trend, and the coefficient of determination(R2) was 0.9763, which means high correlation.