• Title/Summary/Keyword: base flow

Search Result 989, Processing Time 0.025 seconds

The Macroeconomic Impacts of Korean Elections and Their Future Consequences (선거(選擧)의 거시경제적(巨視經濟的) 충격(衝擊)과 파급효과(波及效果))

  • Shim, Sang-dal;Lee, Hang-yong
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.147-165
    • /
    • 1992
  • This paper analyzes the macroeconomic effects of elections on the Korean economy and their future ramifications. It measures the shocks to the Korean economy caused by elections by taking the average of sample forecast errors from four major elections held in the 1980s. The seven variables' Bayesian Vector Autoregression Model which includes the Monetary Base, Industrial Production, Consumption, Consumer Price, Exports, and Investment is based on the quarterly time series data starting from 1970 and is updated every quarter before forecasts are made for the next quarter. Because of this updating of coefficients, which reflects in part the rapid structural changes of the Korean economy, this study can capture the shock effect of elections, which is not possible when using election dummies with a fixed coefficient model. In past elections, especially the elections held in the 1980s, $M_2$ did not show any particular movement, but the currency and base money increased during the quarter of the election was held and the increment was partly recalled in the next quarter. The liquidity of interest rates as measured by corporate bond yields fell during the quarter the election and then rose in the following quarter, which is somewhat contrary to the general concern that interest rates will increase during election periods. Manufacturing employment fell in the quarter of the election because workers turned into campaigners. This decline in employment combined with voting holiday produce a sizeable decline in industrial production during the quarter in which elections are held, but production catches up in the next quarter and sometimes more than offsets the disruption caused during the election quarter. The major shocks to price occur in the previous quarter, reflecting the expectational effect and the relaxation of government price control before the election when we simulate the impulse responses of the VAR model, imposing the same shocks that was measured in the past elections for each election to be held in 1992 and assuming that the elections in 1992 will affect the economy in the same manner as in the 1980s elections, 1992 is expected to see a sizeable increase in monetary base due to election and prices increase pressure will be amplified substantially. On the other hand, the consumption increase due to election is expected to be relatively small and the production will not decrease. Despite increased liquidity, a large portion of liquidity in circulation being used as election funds will distort the flow of funds and aggravate the fund shortage causing investments in plant and equipment and construction activities to stagnate. These effects will be greatly amplified if elections for the head of local government are going to be held this year. If mayoral and gubernatorial elections are held after National Assembly elections, their effect on prices and investment will be approximately double what they normally will have been have only congressional and presidential elections been held. Even when mayoral and gubernatorial elections are held at the same time as congressional elections, the elections of local government heads are shown to add substantial effects to the economy for the year. The above results are based on the assumption that this year's elections will shock the economy in the same manner as in past elections. However, elections in consecutive quarters do not give the economy a chance to pause and recuperate from past elections. This year's elections may have greater effects on prices and production than shown in the model's simulations because campaigners' return to industry may be delayed. Therefore, we may not see a rapid recall of money after elections. In view of the surge in the monetary base and price escalation in the periods before and after elections, economic management in 1992 should place its first priority on controlling the monetary aggregate, in particular, stabilizing the growth of the monetary base.

  • PDF

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

Analysis of the Physical Properties of Ground before and after Low Flowing Grouting (저유동성 그라우팅 시공전후 지반의 물성변화 분석)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Kang, Won-Dong;Jung, Euiyoup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.115-127
    • /
    • 2019
  • The low-flow grouting injection technique, the target construction method for this study, is a method of pouring mortar into the ground by non-emission replacement principle, which can be expected to increase the density of the ground, and, in some cases, be used as a base file using the strength of the high injection solids, along with low noise, low pollution, and high durability. To verify that the dynamic characteristics of the ground are improved by the low-flow injection technique, the test work was conducted on the site and physical tests were performed, and the quality of the improvement formed in the ground was verified through the indoor test on the core and core recovery rate was analyzed. The density logs test layer calculated the volume density of the ground layer by using the Compton scattering of gamma-rays, and the sonic logs was tested on the ground around the drill hole using a detector consisting of sonar and receiver devices inside the drill hole. As a result of the measurement of the change in physical properties (density and sonic logs) before and after grouting, both properties were basically increased after infusion of grout agent. However, the variation in density increase was greater than the increase in speed after grouting, and the ground density measurement method was thought to be effective in measuring the fill effect of the filler. Strength and core recovery rates were measured from specimens taken after the age of 28 days, and the results of the test results of the diffusion and strength test of the improved products were verified to satisfy the design criteria, thereby satisfying the seismic performance reinforcement.

Management of Nutrient Solution Based on $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$Concentration in Deep Flow Culture of Cherry Tomato (방울토마토 담액재배시 $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ 농도에 기초한 배양액 조절)

  • 이문정;김성은;김영식
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.188-194
    • /
    • 1995
  • This study was carried out to investigate the effect of NH$_4$H$_2$PO$_4$ on pH stabilization in deep flow culture system using tap water, and to determine the optimum range of NH$_4$H$_2$PO$_4$ in culture solution. The pH of tap water is 7.5. The higher the concentration of NH$_4$H$_2$PO$_4$ was, the more the pH of nutrient solution was decreased. In NH$_4$H$_2$PO$_4$ 4/3-5/3 me/$\ell$, the pH of nutrient solution was 6-7.5 during the experiment. The highest brix(%) was obtained in NH$_4$H$_2$PO$_4$ 5/3-6/3 me/$\ell$. Leaf length, leaf width and stem-base diameter were highest in NH$_4$H$_2$PO$_4$ 2/3 me/$\ell$. The L and b* values were highest and the a* value was lowest in NH$_4$H$_2$PO$_4$ 8/3 me/$\ell$. Toxicity symptom of ammonium appeared in NH$_4$H$_2$PO$_4$ 8/3 me/$\ell$. It suggests that there was the relationship between leaf color and growth condition. It was concluded that NH$_4$H$_2$PO$_4$ 2/3 me/$\ell$ was good before harvest stage and NH$_4$H$_2$PO$_4$ 5/3-6/3 me/$\ell$ at harvest stage.

  • PDF

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.

Recovery of Mass Changes in Antarctic Ice-Sheet based on the Regional Climate Model, RACMO (RACMO 기후 모델에 기반한 남극 빙상 질량 변동의 재현)

  • Eom, Jooyoung;Rim, Hyoungrea
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.147-157
    • /
    • 2020
  • Mass change in the Antarctic Ice Sheet(AIS) is the most important indicator of changes in Earth's climate system including global mean sea level rise that are largely affected by ongoing global warming. In this study, AIS mass variations are examined with satellite gravity data and outputs from a regional climate model. The analysis of gravity data shows that along the coastal region the Western AIS has experienced a continuous and significant ice loss while a slight increasing in the Eastern AIS during the study period (2002.08-2016.08). The temporal and spatial variations in ice mass changes are recovered by a regional climate model, but the recovered amplitudes are much smaller than those of observations. This under-estimation is remarkably resolved by modifying a base flow field for the ice discharge. The recovered estimates based on the ice-flow field can explain about 97% of the rate of mass change in observations before 2009. This implies that changes in ice flow dynamics along the coast line plays a pivotal role in regulating long-term budget of ice mass in AIS.

Groundwater Flow Modeling and Suggestion for Pumping Rate Restriction around K-1 Oil Stockpiling Base with Geological Consideration (지질조건을 고려한 K-1 비축기지 주변의 지하수 모델링과 양수량 제한구역 제안)

  • Moon, Sang-Ho;Kim, Kue-Young;Ha, Kyoo-Chul;Kim, Young-Seog;Won, Chong-Ho;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.169-181
    • /
    • 2010
  • This study aimed at simulating several responses to stresses caused by the ground water level variations around the K-1 oil stockpile. For this simulation, we considered the characteristic hydrogeological condition including the special occurrence of long and thick acidic dyke, which is regarded as the main geological structure dominating the ground water flow system at this study area. We activated twenty-four imaginary wells which are located in northern and southern area around central K-1 site. Each neighboring distance is altogether 300 m and whole distance between K-1 site and remote wells is 1,200 m. Through the modeling, we operated the long-term and continuous pumping tests and finally categorized five zones based on maximum pumping rates for the imaginary wells; zone I within 300 meter distance from K-1 site with a pumping rate of 50 $m^3/day$; zone II between 300 to 600 meter distance from K-1 site with a pumping rate of 75 $m^3/day$; zone III between 600 to 900 meter distance from K-1 site with 150 $m^3/day$; zone IV between 900 to 1,200 meter distance from K-1 site with 300 $m^3/day$; and zone V of acidic dyke area. At zone V, especially because of their possibility of high transmissivity for groundwater flow, it is necessary to control and restrict groundwater discharge.

A Water Quality Modeling Study of Chunggye Stream during Combined Sewer OverFlow Period (합류식 하수관거 월류수 유입 기간 동안에 나타나는 청계천 수질 변화 모델 연구)

  • Yi, Hye-Suk;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1340-1346
    • /
    • 2005
  • A water quality modeling study was performed for Chunggye stream during combined sewer overflow(CSO) period, utilizing the diagnostic system for water management in small watershed, CREEK-1(Cyber River for Environment and Economy in Korea). This system integrated geogaphic information system, data base, landscape ecological model(FRAGSTATS), watershed model(SWMM), water quality model (WASP5), and computer graphic. In this study, the watershed model and water quality model were extensively utilized so as to simulate water qualities and flow in Chunggye stream during wet periods. The Chunggye stream watershed was divided into 18 sub-basins in the watershed model and the stream reach into 11 segments in the water quality model. The watershed model was validated against field measurements of BOD, TN, TP, and flow at the downstream location, where the model results showed a reasonable agreement with the field measurements at all parameters. From this study, it was shown that the stream water quality would change along with elapsed time from rainfall start as well as rainfall intensity. The model results indicated that the water quality would significantly upgrade due to the first flush and high sewage ratio of CSO at the beginning of rainfall event, but become degraded along with the runoff increase due to dilution effect.

Construction and Start-up Test of Hot-firing Test Facility for KSLV-II Combustion Chamber (한국형발사체 연소기 연소시험설비의 구축 및 시운전)

  • Lee, Kwang-Jin;Yi, Seung Jae;Seo, Daeban;Hwang, Chang Hwan;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;So, Younseok;Kim, Chae-Hyoung;Kim, Sunghyuk;Kim, Seung-Han;Cho, Namkyung;Han, Yeoung Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • This paper covers the result of construction and start-up tests of the KSLV(Korea Space Launch Vehicle)-II combustion chamber hot-firing test facility. This facility was constructed from 2012 to 2014. Start-up test of this facility began in the second half of 2014. Oxidizer cold flow test, fuel cold flow test and cooling water cold flow test were carried out as start-up test. Afterward, ignition test of combustion chamber was accomplished. The result of ignition test is applied to set up start-up sequence of KSLV-II combustion chamber and utilized as base line data for hot-firing test of low and normal design point.