• Title/Summary/Keyword: basaltic

Search Result 163, Processing Time 0.035 seconds

The Occurrence and Formation Mode of Basaltic Rocks in the Tertiary Janggi Basin, Janggi Area (제 3기 장기분지에 나타나는 현무암질암의 산상과 형성기구)

  • Kim, Choon-Sik;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2007
  • A basaltic tuff formation (Upper Basaltic Tuff of the Janggi Group) occurs in close association with basalt (Yeonil Basalt) at the Tertiary Janggi basin. The purpose of this paper is to describe the occurrence of the basaltic tuff and associated basalt and to determine their mode of formation. The basaltic rocks of the study area show few distinct lithofacies, all of which are originated from the interaction of basaltic magma with external water. The four lithofacies include (1) sideromelane shard hyaloclastite, (2) pillow breccia, (3) entablature-jointed basalt, and (4) in-situ breccia. The sideromelane shard hyaloclastite constitutes most of the Upper Basaltic Tuff and has a gradual contact with the pillow breccia. The pillow breccia consists of a poorly sorted mixture of isolated and broken pillows, and small basalt globules and fragments engulfed in a volcanic matrix of sideromelane shard hyaloclastite. The entablature-jointed basalt occurs as a small body within the hyaloclastite. It is characterized by irregularly-curved joints known as entablature. The in-situ breccia occurs as a marginal facies of entablature-jointed basalt, and its width varies from 10 to 30m. The result of this study indicates that the basaltic tuff and associated basalts of the study area were produced by the volcanic activity of same period and the basaltic tuff was formed by subaqueous eruption of basaltic lava followed by nonexplosive quench fragmentation.

Diversity of the Cretaceous basaltic volcanics in Gyeongsang Basin, Korea (경상분지내 백악기 현무암질 화산암류의 다양성)

  • 김상욱;황상구;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The Cretaceous basaltic rocks in Gyeongsang Basin are temporally and spatially dispersed widely in thick sedimentary piles: Chilgog basaltic rock (CGB) and Cheongyongsa basaltic rock (CSB) in the Shindong Group, and Hakbong basaltic rocks (HBB), Osibbong basalt (OSB), Secheondong basaltic rocks (SCB), Haman basaltic rocks (HAB), Hama basaltic rocks (HMB), and Chaeyaksan basaltic rocks (CYB) in the Hayang Group, upwardly in their stratigraphy. Chilgog basaltic rock is merely identified as pebbles in the Shilla Conglomerate and its provenance has not been found, and it is characteristics that the volcanics except Osibbong basalt and Chaeyaksan basaltic rocks are very small in both of their thickness and extension. Petrochemical diversity of the basaltic rocks are revealed; OSB and SCB distributed in the Yeongyang Minor Basin preserve the calc-alkaline natures in major and immobile minor element geochemistry, but CGB, HBB, HAB, and CYB reflect that they might be originated from calc-alkaline basaltic magma of volcanic arc in continental margin area by trace elements and altered to alkaline suites in the viewpoint of their major element geochemistry. Major and trace element geochemistry of CSB and HMB suggests that they may be derived from within -plate alkaline magma contaminated by the upper continental crust, especially in the case of the former.

  • PDF

A Solid-state 27Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses (현무암과 포놀라이트 비정질 규산염의 원자구조 차이에 대한 고상핵자기 공명 분광분석 연구)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • While the macroscopic properties and eruption style of basaltic and phonolitic melts are different, the microscopic origins including atomic structures are not well understood. Here we report the atomic structure differences of glass in diopside-anorthite eutectic composition (basaltic glass) and phonolitic glass using high-resolution 1D and 2D solid-state Nuclear Magnetic Resonance (NMR). The $^{27}Al$ MAS NMR spectra for basaltic glass and phonolitic glass show that the full width at half maximum (FWHM) of Al for basaltic glass is about twice than phonolitic glass, suggesting the topological disorder of basaltic magma is larger than that of phonolitic magma. The $^{27}Al$ 3QMAS NMR spectra for basaltic glass and phonolite glass show much improved resolution than the 1D MAS NMR, resolving Al and Al. Approximately 3.3% of Al is observed for basaltic glass, demonstrating the configurational disorder of basaltic magma is larger than phonolitic magma. This result confirms that the topological disorder of Al in basaltic glass is larger than that of phonolitic glass. The observed structural differences between basaltic glass and phonolitic glass can provide an atomistic origin for change of the macroscopic properties with composition including viscosity.

Petrological study on the intermediate to mafic lavas distributed in Janggi area (1): General geology and petrochemical characteristics (장기 지역에 분포하는 중성~염기성 용암에 관한 암석학적 연구(1): 일반 지질 및 암석화학적 특징)

  • 박주희;김춘식;김진섭;성종규;김인수;이준동;백인성
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.149-170
    • /
    • 1999
  • The volcanic lavas in the Janggi area are plotted on basalt, basaltic andesite and andesite field (SiO$_2$; 48-61 wt.%) in the TAS diagram and belong to subalkaline series. Nineteen chenmical analyses of lavas show two distinct differentiation trends; tholeiitic and calc-alkaline. Calc-alkaline basaltic andesites composed of plagioclase and two-pyroxenes (cpx, opx) in their phenocrysts. Tholeiitics basaltic lavas can be classified into two sub-types. The one is porphyritic basalts composed of plagioclase, clinopyroxene and olivine phenocryst, and the other is aphyric basalt and more evolved lavas (aphyric basaltic andesite) with the same mineral phases. Incompatible elements and REE patterns show the enrichment of LILE and depletion of HFSE. This characteristics indicate that these lavas are evolved from the magmas related to subduction. Howeverm calc-alkaline basaltic andesite lavas show that slightly higher enrichment of LILE and the depletion of HFSE than those of tholeiitic basaltic lavas. On the tectonic discriminant diagram such as Ba/Th and La/Th ratios, calc-alkaline basaltic andesite lavas belong to orogenic medium to high-K suites, whereas tholeiitic basaltic lavas belong to medium-K suites and MORB. On the other diagram, such as La/Yb vs. Th/Yb, the volcanic lavas in the study area plotted in the field of oceanic arc basalt. Tholeiitic basaltic lavas are located in more prinitive environment than calc-alkaline andesitic lavas.

  • PDF

Petrology of the Cretaceous volcanic rocks in northern Yucheon Minor Basin, Korea (북부 유천소분지에 분포하는 백악기 화산암류에 대한 암석학적 연구)

  • Sang Wook Kim;Sang Koo Hwang;Yoon Jong Lee;Jae Young Lee;In Seok Koh
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The volcanic piles in the northern Yucheon Minor Basin area are the Hagbong basaltic rocks, the Chaeyaksan basaltic rocks, the Jusasan andesitic rocks, the Unmunsa rhyolitic rocks, and the Tertiary voicanics. Stratigraphically, from the lowermost, (1) the Hagbong basaltic rocks are composed mainly of basaltic tuff with two olivine basalt flows intercalated, (2) the Chaeyagsan basaltic rocks are predominantly in tuffs and agglomerate with 3 basaltic flow interlayers, (3) the Jusasan andesitic rocks consist of thick piles of alternated sequences of 4 andesite flows and 5 andesitic tuffs and tuffaceous sediments and (4) the Unmunsa rhyolitic rocks which embed some rhyolite and obsidian are dominant in tuffs such as ash flow and crystal welded tuff. These volcanics reveal distinguishable characteristics in petrochemistry. In discriminating by major elements, the Hagbong and the Chaeyagsan basaltic rocks are alkaline, whereas the latter is also spilitic. In comparison, the volcanic rocks of the Jusasan andesitic rocks and the Tertiary sequences are characteristically calc-alkaline although their distribution is spatially separated. On the other hand, the variations in immobile trace elements indicate that the Hagbong basaltic rocks range from alkaline to calc-alkaline and from WPB/VAB transition to VAB, whereas the Chaeyagsan basaltic rocks are calc-alkaline WPB/VAB transition type and the two others calc-alkaline VAB. In order to show such a variety in their rock series of the volcanic rocks, the environment during their magma generation, magma rising, and post-eruption alteration could be positively considered.

  • PDF

Modulus of elasticity of concretes produced with basaltic aggregate

  • Maia, Lino;Aslani, Farhad
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2016
  • Basalt is a type of volcanic rocks, grey to black in colour, contains less than 20% quartz, 10% feldspathoid, and at least 65% of the feldspar of its volume. Basalt is considered an igneous rock with fine grains due to the rapid cooling of lava. Basaltic rocks have been widely used as aggregate for various purposes. The study presented in this paper was carried out on basalts that are widespread in the Madeira Island of Portugal and that comprise the major source of local crushed rock aggregates. This paper discusses an experimental programme that was carried out to study the effects of basaltic aggregate on the compressive strength and modulus of elasticity of concrete. For this purpose, cylinder specimens with $150{\times}300mm$ dimensions and prism specimens with $150{\times}150{\times}375mm$ dimensions were cast. The experimental programme was carried out with several concrete compositions belonging to strength classes C20/25, C25/30, C30/37, C40/50 and C60/75. The Eurocode 2 indicates the modulus of elasticity should be 20% higher when the aggregates are of basaltic origin, however results showed significant differences and a correction is proposed.

Geochemical and Isotopic Studies of the Cretaceous Igneous Rocks in the Yeongdong basin, Korea: Implications for the origin of magmatism in a pull-apart basin

  • H. Sagong;S.T. Kwon;C.S. Cheong;Park, S. H.
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.95-95
    • /
    • 2001
  • The Yeongdong basin is one of the pull-apart basins in the southwestern part of the Korean Peninsula that has developed during Cretaceous sinistal fault movement. The bimodal igneous activities (basalts and rhyolites) in the basin appear to be closely associated with the basin development. Here, we discuss the origin of the igneous rocks using chemical and radiogenic isotope data. Basaltic (48.4-52.7 wt% SiO$_2$) and rhyolitic (70.3-70.8 wt% SiO$_2$) rocks are slightly alkalic in a total alkali-silica diagram. The rhyolitic rocks with have unusually high K$_2$O contents (5.2-6.0 wt%). The basaltic rocks show an overall pattern of within-plate basalt in a MORB-normalized spider diagram, but have distinct negative anomaly of Nb, which indicates a significant amount of crustal component in the magma. The basaltic rocks plot within the calc-alkaline basalt field in the Hf/3-Th-Ta and Y/l5-La/10-Nb/8 discrimination diagrams. The eNd(T) values of the basaltic rocks (-13.6 to 14.3) are slightly higher than those of the rhyolitic rocks (-14.1 to 15.2), and the initial Sr isotopic ratios of the former (0.7085-0.7093) are much lower than those of the latter (0.7140-0.7149). However, the initial Nd and Sr isotope ratios of the igneous rocks in the Yeongdong basin are similar to those of the nearby Cretaceous igneous rocks in the Okcheon belt. The Pb isotope ratios plot within the field of Mesozoic granitoids outside of the Gyeongsang basin in Pb-Pb correlation diagrams. Since a basaltic magma requires the mantle source, the enriched isotopic signatures and negative Nb anomaly of the basaltic rocks suggest two possibilities for their origin: enriched mantle lithospheric source, or depleted mantle source with significant amount of crustal contamination. However, we prefer the first possibility since it would be difficult for a basaltic magma to maintain its bulk composition when it is significantly contaminated with granitic crustal material. The slightly more enriched isotopic signatures of rhyolitic rocks also suggest two possibilities: differentiate of the basaltlc magma with some crustal contamination, or direct partial melting of the lower crust. Much larger exposed volume of the rhyolitic rocks, compared with the basaltic rocks, indicates the latter possibility more favorable.

  • PDF

Estimation of Deformation Modulus of Basaltic Rock Masses in Northeastern and Northwestern Jeju Island (제주도 북동부 및 북서부 현무암반의 변형계수 추정)

  • Yang, Soon-Bo;Boo, Sang-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.5-15
    • /
    • 2019
  • In this study, the in situ deformation moduli, which were measured by borehole loading tests at basaltic rock masses located in the northeastern onshore and offshore and the northwestern onshore of Jeju Island, were examined in relation to RQD and RMR. The measured deformation moduli were also compared with the estimated deformation moduli from conventional empirical formulas using RQD and RMR. In addition, the measured deformation moduli were analyzed with respect to both the velocity ratio ($V_P/V_S$) and dynamic Poisson's ratio, which were obtained from the elastic wave velocities measured by velocity logging tests. As results, with only RQD, it was inappropriate to evaluate the quality of the Jeju island basaltic rock masses, which are characterized by vesicular structures, to select a measurement method of in situ deformation moduli, and to estimate the deformation moduli. On the other hand, it was desirable to evaluate the quality of the Jeju Island basaltic rock masses, and to estimate the deformation moduli by using RMR. The conventional empirical formulas using RMR overestimated the deformation moduli of the Jeju Island basaltic rock masses. There was qualitative consistency in the relation between velocity ratio and deformation moduli. To estimate appropriately the deformation moduli of the Jeju Island basaltic rock masses, empirical formulas were proposed as the function of RMR and velocity ratio, respectively.

제주도지역 대수층들의 수직적 분포와 수리적 연결성

  • 고동찬;이대하;박기화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.17-20
    • /
    • 2002
  • The environmental tracers of $^3$H and NO$_3$ were investigated in terms of vertical connections between basaltic aquifers and underlying sedimentary formations of Seoguipo formation that is not found in eastern coastal area and U formation. In western coastal area, $^3$H shows values less than 0.5TU In the wells completed in Seoguipo formation whereas it is greater than 2TU in other area. For the wells in western area, NO$_3$ concentrations are below background level though the nearby land uses are mainly agricultural. The groundwater heads are much lower in eastern coastal area than western area in spite that recharge rate of eastern area is 1.7 times higher than that of western area. The basaltic aquifer is thicker by 70m in eastern coastal area than in western coastal area, which is insufficient to explain much lower groundwater heads in eastern area. These hydrogeological characteristics suggest that for the basaltic aquifers, the Seoguipo formation acts as a lower boundary which could limit downward groundwater flow in basaltic aquifers whereas the U formation is unlikely.

  • PDF

Supergene Alteration of Basaltic Ash in Udo Tuff Cone, Jeju Island (제주도 우도 현무암질 화산재의 표성 변질작용)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.141-150
    • /
    • 2010
  • Basaltic ash of Udo tuff cone, Jeju Island, was almost fresh across strata, but significantly altered toward surface by supergene process. The supergene alteration of the Udo tuff was examined by using X-ray diffraction, scanning and transmission electron microscopy, and electron microprobe analysis for elucidating the alteration process of basaltic ash in terrestrial environments. Fresh ash particles were composed of glass matrix, plagioclase, olivine, and pyroxene. The glass matrix was selectively replaced inward by colloform alteration rinds of Fe-Ti-rich amorphous silicate nanogranules and smectite, often leaving glass core at the center of larger ash particles. Some of the dissolved species released from the altered ash particle precipitated as fine honycomb aggregates of smectite on the pore walls, contributing to the cementation and lithification of volcanic ash.