• Title/Summary/Keyword: basal acid secretion

Search Result 46, Processing Time 0.028 seconds

R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo;Seo, Hong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.273-282
    • /
    • 2006
  • The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Effects of Linoleic Acid and Serum Albumin Concentrations on Lipid Metabolism in HepG2 Cells (간세포 배양에서 Linoleic Acid와 혈청알부민의 첩가가 지질대사에 미치는 영향)

  • Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.229-234
    • /
    • 1999
  • The effects of linoleic acid(LA, 18 : 2) and/or bovine serum albumin(BSA) on the lipid metabolism in human hepatoma cell line HepG2 cells were evaluated. HepG2 cells were cultured in basal Dulbecco's modified Eagle's(DME) medium(Basal medium), DME medium containing 0.2 mM LA(LA medium), or DME medium containing both 0.2 mM LA and 0.2-1.0% BSA(LA+BSA medium). $[^{14}C]Acetate(0.3\;{\mu}Ci/ml\;medium)$ was added as a radioactive lipid precursor and the cells were incubated for 6 hours. An addition of LA to basal medium resulted in a decrease in the incorporation of $[^{14}C]acetate$ into total cholesterol fraction. In contrast, an addition of BSA to LA-containing medium tended to increase the incorporation of $[^{14}C]acetate$ into total cholesterol. The alteration of cholesterol metabolism in HepG2 cells incubated in LA+BSA medium was attributed by an increase in the incorporation of $[^{14}C]acetate$ into free cholesterol, but not cholesteryl ester fraction. In addition, the secretion of cholesterol was increased by LA+BSA medium, suggesting that BSA stimulates cholesterol secretion. No significant change in the incorporation of $[^{14}C]acetate$ into cellular total lipids was observed among the experimental groups. However, an increased incorporation of $[^{14}C]-labelled$ fatty acid into cellular triacylglycerol and decreased incorporation into phospholipid were observed in cells incubated with LA+BSA medium as compared to those of LA medium. The secretions of $[^{14}C]-labelled$ triacylglycerol, phospholipid, and free fatty acid were also stimulated in HepG2 cells incubated with LA+BSA medium. In conclusion, the present study suggests that in human hepatocytes, LA and BSA influence lipid metabolism, and BSA enhances the secretion of lipids.

  • PDF

Inhibitory Effects of Self-Fermented Pine Needle Extract on Catecholamine Release in the Rat Adrenal Medulla

  • Choi, Mee-Sung;Seo, Young-Hwan;Cheong, Hyeon-Sook;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.36-48
    • /
    • 2013
  • The aim of the present study was to investigate the effects of several fractions obtained from methylene chloride ($CH_2Cl_2$) extract of self-fermented pine needle (SFPNE) on the acetylcholine (ACh)-evoked CA release from the isolated perfused model of the rat adrenal medulla and to establish the mechanism of the most active fraction (Fr.)-induced inhibitory action on the CA release. We obtained 6 fractions from $CH_2Cl_2$ extract of self-fermented pine needle. For the ACh (5.32 mM)-evoked CA release, the following rank order of inhibitory potency was obtained: Fr.4-5 > Fr.8-11 ${\gg}$ Fr.3 > Fr.6 = Fr.7 > Fr.1-2. Fr. 4 - 5 (60 ${\mu}g/mL$) perfused into an adrenal vein for 90 min produced relatively time-dependent inhibition of the CA secretory responses to ACh (5.32 mM), DMPP (100 ${\mu}M$), McN-A-343 (100 ${\mu}M$) and high $K^+$ (56 mM). Fr. 4 - 5 itself did not affect basal CA secretion. Also, in the presence of Fr. 4 - 5 (60 ${\mu}g/mL$), the CA secretory responses to angiotensin II (AngII, 0.1 ${\mu}M$), veratridine (50 ${\mu}M$), Bay-K-8644 (10 ${\mu}M$), and cyclopiazonic acid (10 ${\mu}M$) were significantly reduced, respectively. In the simultaneous presence of Fr. 4 - 5 (60 ${\mu}g/mL$) and L-NAME (30 ${\mu}M$), the inhibitory responses of Fr. 4 - 5 on the CA secretion evoked by ACh, DMPP, high $K^+$, AngII, Bay-K-8644 and veratridine were considerably recovered to the extent of the corresponding control secretion compared with that of Fr. 4 - 5-treatment alone. The level of NO released from adrenal medulla after the treatment of Fr. 4 - 5 (60 ${\mu}g/mL$) was greatly elevated compared with the basal level. Taken together, these results demonstrate that Fr. 4 - 5 inhibits the CA secretion from the isolated perfused rat adrenal medulla evoked by stimulation of cholinergic receptors as well as by direct membrane-depolarization. It seems that this inhibitory effect of Fr. 4 - 5 is mediated by blocking the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells as well as by inhibition of $Ca^{2+}$ release from the cytoplasmic calcium store, which is evoked at least partly through the increased NO production due to the activation of NO synthase. Based on these results, it is also thought that Fr. 4 - 5 isolated from $CH_2Cl_2$ extract of pine needle may contain beneficial antihypertensive components to prevent or treat hypertension.

Effect of Damage to Medial Amygdaloid Nucleus on Pancreatic Exocrine Secretion Stimulated by Hydrochloric Acid in the Rat (흰쥐에서 내측 편도핵의 손상이 염산 자극에 의한 췌장 외분비에 비치는 영향)

  • Kim, Myung-Suk;Yoon, Shin-Hee;Hahn, Sang-June;Kim, Mie-Hye
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.273-280
    • /
    • 1988
  • This study was undertaken to investigate the effect of the medial amygdaloid nucleus on the pancreatic exocrine secretion and plasma secretin concentration in 44 male albino rats. Twenty-three rats in which the medial amygdaloid nucleus was damaged bilaterally by radio frequency a.c. through stereotaxically inserted electrodes (medical amygdaloid group, MA) and twenty-one rats which received the same operation without damage (operated control, OC), were prepared. Under urethan anesthesia, 0.01 N hydrochloric acid (HCl) or physiological saline (0.9% NaCl) was infused at a rate of 0.18 ml/min into the duodenum for 20 minutes. Pancreatic jucie was collected for the 20 min infusion period. After collection of pancreatic juice, blood was sampled from the abdominal aorta for the radioimmunoassay of plasma secretin concentration. In the MA group, the exocrine pancreatic secretory response to 0.01 N HCI as well as saline infusion was significantly inhibited compared with that in the OC group. The pancreatic protein output of the MA group significantly decreased after the saline infusion and tended to decrease after the 0.01 N HCI infusion, compared with that of the OC group. However, there was no significant difference in plasma secretin concentration between the two groups. Therefore it is strongly suggested that the rat medial amygdaloid nucleus has a facilitatory influence on both basal and acid-stimulated pancreatic exocrine secretion, but the releasing mechanism of secretin appears not to be involved in the influence.

  • PDF

Effect of Doxorubicin on Catecholamine Release in the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Song-Hoon;Seoh, Yoo-Seung;Lee, Eun-Sook;Kim, Il-Hwan;Jo, Seong-Ho;Hong, Soon-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.215-223
    • /
    • 2002
  • The present study was undertaken to investigate the effect of doxorubicin (DX) on secretion of catecholamines (CA) evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. DX $(10^{-7}{\sim}10^{-6}\;M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition of CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M).$ However, lower dose of DX did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M),$ but its higher doses depressed time-dependently CA secretion evoked by high $K^+.$ DX itself did also fail to affect basal CA output. In adrenal glands loaded with DX $(3{\times}10^{-7}\;M),$ CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were time-dependently inhibited. Furthermore, daunorubicin $(3{\times}10^{-7}\;M),$ given into the adrenal gland for 60 min, attenuated CA secretory responses evoked by ACh, high $K^+,$ DMPP and McN-A-343. Taken together, these results suggest that DX causes relatively dose- and time-dependent inhibition of CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland. However, lower dose of DX did not affect CA secretion by high $K^+,$ and higher doses of DX reduced time-dependently CA secretion of high $K^+.$ It is thought that these effects of DX may be mediated by inhibiting both influx of extracellular calcium into the rat adrenomedullary chromaffin cells and intracelluar calcium release from the cytoplasmic store. Also, there was no difference in the mode of action between DX and daunorubicin in rat adrenomedullary CA secretion.

Protective Effect of Nicotine on Gastrin-induced Gastric Mucosal Damage in Rats (Gastrin 유발 위점막 손상에 대한 Nicotine의 보호 효과)

  • Piao, Shi-Hao;Kim, Dong-Goo;Jin, De-Nan;Wu, Zhen-Jiu;Hong, Chun-Lan;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.313-321
    • /
    • 1995
  • Conflicting data have been reported on the effect of nicotine on gastric mucosal damage. To elucidate the effect of chronic intermittent nicotine on gastric mucosal damage, intragastric nicotine (5 mg/kg, 10 mg/kg) was administered twice per day for 9 days. Gastric mucosal damage was created by s.c. injection of a large dose (1.2 mg/kg) of pentagastrin followed by pylorus ligation for 6 hours. Nicotine treated rats showed reduced gastric mucosal damage about 50% of the control. To examine the mechanism of the protective effect of nicotine, gastric perfusion experiments were done. Basal acid secretion was not affected by intragastric or intravenous nicotine. However, pentagastrin-stimulated acid secretion markedly inhibited by a bolus injection of nicotine, and this response was dose-related. These data indicates that chronic intermittent administration of nicotine protects gastric mucosa against gastrin-induced gastric mucosal damage, and nicotine-induced inhibition of gastrin-stimulated acid secretion has an important role for the protective effect of nicotine. Considering reports concerning nicotine's aggravating effect on the gastric mucosal damage, it is suggested that the methods of administration of nicotine may be an important decisive factor of the divergent action of nicotine on the gastric mucosa.

  • PDF

The Antigastritic Effect of Taraxaci Herba (포공영의 항위염 작용)

  • Lee, Eun-Bang;Kim, Jung-Keun;Kim, Ok-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.4
    • /
    • pp.313-318
    • /
    • 1993
  • The methanol extract of Taraxaci Herba was found to have inhibitory effect on the gastric lesion induced by HCl-ethanol. The systematic fractionation of the methanol extract resulted in positive action with water fraction in the gastric lesion. It also showed significant inhibition of gastric lesion induced by HCl-aspirin and absolute ethanol, but did not prevent indomethacin induced gastric lesion. This fraction did not affect basal gastric acid secretion but showed a decrease of pepsin activity in pylorus-ligated rats.

  • PDF

Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments (중금속류가 취절편의 Amylase 분비에 미치는 영향)

  • Kim, Hea-Young;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

Effects of Losartan on Catecholamine Release in the Isolated Rat Adrenal Gland

  • Noh, Hae-Jeong;Kang, Yoon-Sung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.327-335
    • /
    • 2009
  • The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5${\sim}$50 ${\mu}$M) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}$M) and McN-A-343 (100 ${\mu}$M). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 ${\mu}$M) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}$M, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}$M, an inhibitor of cytoplasmic $Ca^{2+}$ -ATPase), veratridine (100 ${\mu}$M, an activator of $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150${\sim}$300 ${\mu}$M), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement of the CA release.

Cotinine Inhibits Catecholamine Release Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Koh, Young-Yeop;Jang, Seok-Jeong;Lim, Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.747-755
    • /
    • 2003
  • The aim of the present study was to clarify whether cotinine affects the release of catecholamines (CA) from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, in comparison with the response of nicotine. Cotinine (0.3∼3 mM), when perfused into an adrenal vein for 60 min, inhibited CA secretory responses evoked by ACh (5.32 mM), DMPP (a selective neuronal nicotinic agonist, 100 $\mu$M for 2 min) and McN-A-343 (a selective muscarinic $M_1 -agonist, 100 \mu$ M for 2 min) in dose- and time-dependent manners. However, cotinine did not affect CA secretion by high $K^+$ (56 mM). Cotinine itself also failed to affect basal CA output. Furthermore, in the presence of cotinine (1 mM), CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, 10 $\mu$ M) and cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase, 10 \mu$ M) were relative time-dependently attenuated. However, nicotine (30$\mu$ M), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh and high $K^+$, followed by the inhibition later, while it time-dependently depressed the CA release evoked by McN-A-343 and DMPP. Taken together, these results suggest that cotinine inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by the direct membrane-depolarization. It seems that this inhibitory effect of cotinine may be exerted by the cholinergic blockade, which is associated with blocking both the calcium influx into the rat adrenal medullary chromaffin cells and $Ca^{2+}$ release from the cytoplasmic calcium store. It also seems that there is a big difference in the mode of action between cotinine and nicotine in the rat adrenomedullary CA secretion.