• Title/Summary/Keyword: bas-relief ambiguity

Search Result 3, Processing Time 0.018 seconds

A New Refinement Method for Structure from Stereo Motion (스테레오 연속 영상을 이용한 구조 복원의 정제)

  • 박성기;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.935-940
    • /
    • 2002
  • For robot navigation and visual reconstruction, structure from motion (SFM) is an active issue in computer vision community and its properties arc also becoming well understood. In this paper, when using stereo image sequence and direct method as a tool for SFM, we present a new method for overcoming bas-relief ambiguity. We first show that the direct methods, based on optical flow constraint equation, are also intrinsically exposed to such ambiguity although they introduce robust methods. Therefore, regarding the motion and depth estimation by the robust and direct method as approximated ones. we suggest a method that refines both stereo displacement and motion displacement with sub-pixel accuracy, which is the central process f3r improving its ambiguity. Experiments with real image sequences have been executed and we show that the proposed algorithm has improved the estimation accuracy.

A Refinement Method for Structure from Stereo Motion

  • Park, Sung-Kee;Kim, Mun-Sang;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.6-63
    • /
    • 2001
  • For robot navigation and visual reconstruction , structure from motion (SFM) is an active issue in computer vision community and its properties are also becoming well understood. As a drawback in SFM, it is well known that the SFM methods, using small motion model such as optical flow and direct method, have inevitably motion ambiguity between translation and rotation, which is called bas-relief ambiguity. In this paper based on the robust direct method using stereo image sequence, we present a new method for improving those ambiguities. Basically, the direct method uses nearly all image pixels for estimating motion parameters and depths, and global optimization techniques are adopted for finding its solution ...

  • PDF

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.