• Title/Summary/Keyword: barstar gene

Search Result 3, Processing Time 0.025 seconds

Development of male sterile transgenic lines in rice by tapetum specific expression of barnase gene

  • Kumar, Pravin;Kaur, Kulwinder;Purty, Ram Singh;Mohan, Madan;Burma, Pradeep Kumar
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • The key to development of barnase-barstar transgene based hybrid seed technology is the availability of tightly regulated tapetum specific promoter, as any leaky expression of the barnase gene leads to several unintended effects. In the present study, we used two different tapetum specific promoters i.e. promoter of the RTS gene isolated from rice cultivar IR64 and the OsG6b promoter from japonica rice cultivar Hayayuki to express the barnase gene in rice transgenic lines. While viable male sterile transgenic lines could not be obtained with RTS promoter we could develop single copy male sterile lines when the barnase gene was expressed under the OsG6b promoter.

Construction of a Transposon-mediated Baculovirus Vector Hanpvid and a New Cell Line for Expressing Barnase

  • Qin, Qin;Liu, Ying-Le;Zhu, Ying;Li, Shun-Yi;Qi, Yi-Peng
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this study we developed the transposon-mediated shuttle vector 'Hanpvid', which composed of HaNPV (Heliothis armigera nuclear polyhedrosis virus) genomic DNA and a transposon cassette from Bacmid of Bac-to-Bac system. Hanpvid replicates in E. coli in the same way as Bacmid and retains infective function in cotton bollworm cells (Hz-AM1). Using Hanpvid we constructed a recombinant virus, which could infect Hz-AM1 cells and generate recombinant HaNPV (rHa-Bar) containing the barnase gene, a ribonuclease gene from Bacillus amyloliquefaciens. Since the expression vector carrying barnase gene cannot replicate in the absence of barstar, a specific inhibitor of barnase, we constructed a new cotton bollworm cell line (AM1-NB) using the marker rescue method. In AM1-NB barstar was integrated into the cellular chromosome to sustain the replication of rHa-Bar. To screen out recombinant HaNPV for potential use as biopesticide, Hz-AM1 and AM1-NB cell lines were infected with rHa-Bar, respectively. The results obtained indicate that Viral progenies in AM1-NB were 23 and 160 times greater than those in Hz-AM1 48 h and 72 h after infection, respectively. With additional insertion of the polyhedron gene from AcNPV (Autographa californica nuclear polyhedrosis virus) into the Hanpvid genome, rHa-Bar regained the polyhedron phenotype and its pest-killing rate greatly improved. Toxic analysis showed that the lethal dosages ($LD_{50}$) and the lethal time(s) ($LT_{50}$) of rHa-Bar were reduced by 20% and 30%, respectively, compared to wt-HaNPV in the third instar larvae of cotton bollworm. This study shows that in AM1-NB barnase can be effectively produced and used as pest-killing agent for the biological control of cotton pests.

Multiplex PCR Detection of the GT73, MS8xRF3, and T45 Varieties of GM Canola

  • Kim, Jae-Hwan;Kim, Tae-Woon;Lee, Woo-Young;Park, Sun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • A multiplex polymerase chain reaction (PCR) method was developed to simultaneously detect three varieties of genetically modified (GM) canola. The construct-specific primers were used to distinguish the following three varieties of GM canola; GT73, MS8xRF3, and T45, using multiplex PCR. The FatA (fatty acyl-ACP thioesterase) gene was used as an endogenous canola reference gene in the PCR detection. The primer pair Canendo-FIR containing a 105 bp amplicon was used to amplify the FatA gene and no amplified product was observed in any of the 15 different plants used as templates. The GT73-KHUF1/R1 primer recognized the 3'-flanking region of GT73, resulting in an amplicon of 125 bp. The Barstar-F1/MS8xRF3-R primer recognized the junction region of bars tar and the NOS terminator introduced into MS8xRF3, resulting in a 162 bp amplicon, and the T45-F2/R2 primer recognized the junction region of PAT and the 35S terminator introduced into T45, resulting in an amplicon of 186 bp. This multiplex PCR allowed for the detection of construct-specific targets in a genomic DNA mixture of up to 1% GM canola containing GT73, MS8xRF3, and T45.