• Title/Summary/Keyword: barrier polymers

Search Result 33, Processing Time 0.023 seconds

Fabrication and application of post surgical anti-adhesion barrier using bio-compatible materials (생체 적합성 재료를 이용한 수술후 유착 방지막의 제작과 응용)

  • Park S.H.;Kim H.C.;Yang D.Y.;Kim T.K.;Park T.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.203-204
    • /
    • 2006
  • Studies on some biodegradable polymers and other materials such as hydrogels have shown the promising potential for a variety of surgical applications. Postoperative adhesion caused by the natural consequence of surgical wound healing results in problems of the repeated surgery. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall of this work, a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel has been developed. The ideal barrier for preventing postoperative adhesion would have the following properties; it should be (i) resorbable (ii) non-reactive (iii) easy to apply (iv) capable of being fixed in position. In order to fulfill these properties, we adopted solid freeform fabrication method combined with surface modification which includes the hydrogel coating, therefore, inner or outer structure can be controlled and the property of anti adhesion can be improved.

  • PDF

Protective System from Medical Needle-sticks. Part I: Background and System Development

  • Turner, LaDawnya C.;Seyam, Abdelfattah M.;Banks-Lee, Pamela
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2003
  • Previous research on healthcare workers’ protection has concentrated on liquid barrier protection by providing impermeable personal articles such as latex gloves. This property is of high importance but since most blood-borne pathogen transmissions in the healthcare industry are caused by needle-stick injuries, protection from sharp invasive instruments should also be of high concern. And since latex and alike provide no protection against needle-stick injuries, new protective systems need to be developed and evaluated. This part of the study provides a review regarding the current practice of protection and the serious problems that arise from needle-flick injuries. Additionally, the development of new protective system is described. In part II of the study, evaluation of the new system will be provided.

Synthesis and Properties of Nylon 6/PEG Random Block Copolymer/Clay Nanocomposite via in situ Polymerization (in situ중합을 통한 나일론 6-PEG 랜덤공중합체/점토 나노복합체의 합성 및 물성)

  • Angelica S. Lopez;Pio Sifuentes;Kim, Kap-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.72-74
    • /
    • 2003
  • There has been extensive interest in the development of new nanocomposites. One kind of these systems is the hybrid based on organic polymers and inorganic minerals consisting of layered silicates. Some properties like stiffness, strength, barrier properties, thermal, and oxidative stability can be improved by the presence of the filler in the polymeric matrix[1]. It is reported that, in the nylon 6/clay nanocomposites, the modulus is increased, but impact strength and elongation at break are drastically decreased. (omitted)

  • PDF

Preparation of Water-Soluble Syndiotacticity-Rich Low Molecular Weight Poly(vinyl alcohol) by Solution Copolymerization of Vinyl Pivalate/Vinyl Acetate in Tetrahydrofuran and Saponification (피발산비닐과 아세트산비닐의 테트라히드로푸란계 용액공중합에 의한 수용성 저분자량 교대배열 폴리비닐알코올의 제조)

  • Lyo, Won-Seok;Yeum, Jeong-Hyun;Ji, Byung-Chul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.187-190
    • /
    • 2002
  • Poly(vinyl alcohol) (PVA) is a representative hydrophilic and water-soluble polymer and widely employed in various applications such as fibers for clothes and industries, films, membranes, medicines for drug delivery system, and cancer cell-killing embolic materials. Moreover, PVA fibers, gels, and films are potentially high-performance materials because they have high tensile and impact strengths, high tensile modulus, high abrasion resistance, excellent alkali resistance, and oxygen barrier property which are superior to those of any known polymers[1,2]. (omitted)

  • PDF

Layered Silicate-Polymer Nanocomposites

  • Jeong, Han-Mo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.18-18
    • /
    • 2003
  • Natural clays are composed of oxide layers whose thickness is about 1nm and cations existing between the layers. A number of these layers makes primary particles with a height of about 8∼10nm and these primary particles make aggregates with a size of about 0.1∼10$\mu\textrm{m}$. When layered silicate was made to be organophilic, by exchanging the interlayer cations with organic cationic molecules, the matrix polymer can penetrate between the layers to give a nanocomposite, where 1nm-scal clay layers exist separately in a continuous polymer matrix. These nanostructured hybrid organic-inorganic composites have attracted the great interest of researchers over the last 10 years. They exhibit improved performance properties compared with conventional composites, because their unique phase morphology by layer intercalation or exfoliation maximizes interfacial contact between the organic and inorganic phases and enhances interfacial properties. Since the advent of nylon-6/montmorillonite nanocomposite developed by Toyota Motor Co., the studies on layered silicate-polymer nanocomposites have been successfully extended to other polymer systems. They greatly improved the thermal, mechanical, barrier, and even the flame-retardant properties of the polymers.

  • PDF

Comprehending Polymer-Clay Nanocomposites and Their Future Works (고분자-점토 나노복합체 이해와 향후 연구 방향)

  • Choi, Yeong Suk;Chung, In Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.23-36
    • /
    • 2008
  • Polymer-clay nanocomposites, a novel organic-inorganic hybrid, attract much attention from both scientific fields and engineering fields due to their balanced improvements in mechanical properties as well as diffusion behaviors, including flame-retarding and barrier properties, with small amounts of clay. Preparation of polymer-clay nanocomposites, summarized as a process for uniform dispersion of hydrophilic layered clays in hydrophobic polymer matrixes, includes several technologies and scientific phenomena, such as surface-modifications of clay layers, physical properties of clays in liquids and dried states, polymer synthesis, polymer rheology, behaviors of polymer solutions/or monomers in the confined geometry, mechanical properties of polymers and clays. To comprehend complicated physical/chemical phenomena involved in the fabrication of nanocomposites, we reviewed physical properties of clays, structures of clays in nanocomposites, characterization of nanocomposites, the relation between morphology and physical property of nanocomposites, surveyed recent research trends, and then suggested a few strategies or methods for fabrication of nanocomposites reflecting future research directions.

Study on the Gas Permeation Behaviors of Surface Fluorinated Polysulfone Membranes (표면불소화 폴리설폰 막의 기체 투과거동에 관한 연구)

  • Kim, Dae-Hoon;Im, Hyeon-Soo;Kim, Min-Sung;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Kim, Beom-Sik;Park, You-In;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.537-543
    • /
    • 2009
  • The direct fluorination of polymers is a heterogeneous reaction using the mixture of $F_2$ and inert gas. In general, the resulting fluorinated polymers have good barrier property chemical stability similar to those of the fluoro-polymers, and could be prepared from the simple process. In this study, the polysulfone dense films were surface fluorinated using the direct fluorination technique and gas permeability and selectivity of the prepared membranes were measured with varying both $F_2$ concentration and reaction time. The introduction of $F_2$ was confirmed by X-ray photoelectron spectroscopy (XPS), water contact angles, and atomic force microscopy (AFM). As the $F_2$ increased, the permeability decreased while the selectivities for $O_2$, $CO_2$, and He gases relative to $N_2$ increased.

Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances (고분자 연료전지용 세공충진막의 제조 및 연료전지 특성)

  • Choi, Young-Woo;Park, Jin-Soo;Lee, Mi-Soon;Park, Seok-Hee;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.278-281
    • /
    • 2009
  • Proton exchange membrane is the key material for proton exchange membrane fuel cells (PEMFC). Currently widely-used perfluorosulfonic acid membranes have some disadvantages, such as low thermal stability, easy swelling, excessive crossover of methanol and high price etc. Other membranes, including sulfonated polymer, radiation grafted membranes, organic-inorganic hybrids and acid-base blends, do not satisfy the criteria for PEMFC, which set a barrier to the development and commercialization of PEMFC. Pore-filling type proton exchange membrane is a new proton exchange membrane, which is formed by filling porous substrate with electrolytes. Compared with traditional perfluorosulfonic acid membranes, pore-filling type proton exchange membranes have many advantages, such as non- swelling, low methanol permeation, high proton conductivity, low cost and a wide range of materials to choose. In this research, preparation methodology of pore-filling membranes by particularly using all hydrocarbon polymers and fuel cell performances with the membranes are evaluated.

  • PDF

Influense of the high-voltage conductivity on peculiarity of polarization ferroelectric polymer on based vinylidenefluoride

  • Kochervinskii, V.V.;Chubunova, E.V.;Lebedinskii, Y.Y.;Pavlov, A.S.;Pakuro, N.I.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2015
  • The phenomena of high-voltage polarization and conductivity in oriented vinylidenefluoride and tetrafluoroethylene copolymer films have been investigated. It was shown that under certain electric fields, injection of carriers from the material of electrodes appears The barrier for holes injection in the copolymer was found to be lower than that for electrons. It results in more effective screening of the external field near the anode than near cathode. Electrones, ejected from cathode, creating negative charge by trapping on the surface. It is shown that the electrons injected from cathodes create a negative homocharge on the copolymer surface and then become captured on the surface shallow traps. Their nature has been studied by the x-ray photoelectron spectroscopy. It was shown that these traps may consist of chemical defects in the form of new functional groups formed by reactions of surface macromolecules with sputtered atoms of aluminum. The asymmetric shape of hysteresis curves was explained by the difference in mobility of injected holes and electrons. These factors caused appearance of "non-closed" hysteresis curves for fluorine-containing polymer ferroelectrics. Hysteresis phenomena observed at low electric fields (below coercive ones) are to associate with the behavior of the domains localized in the ordered regions formed during secondary crystallization of copolymers.

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials (NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 )

  • JinUk Yoo;Sung Gyu Pyo
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.2
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.