• Title/Summary/Keyword: barrier performance

Search Result 816, Processing Time 0.026 seconds

Analytical study on seepage behavior of a small-scale capillary barrier system under lateral no-flow condition

  • Byeong-Su Kim
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.13-27
    • /
    • 2023
  • The model production for large-scale (lateral length ≥ 2.0 m) capillary barrier (CB) model tests is time and cost-intensive. To address these limitations, the framework of a small-scale CB (SSCB) model test under the lateral no-flow condition has been established. In this study, to validate the experimental methodology of the SSCB model test, a series of seepage analyses on the SSCB model test and engineered slopes in the same and additional test conditions was performed. First, the seepage behavior and diversion length (LD) of the CB system were investigated under three rainfall conditions. In the seepage analysis for the engineered slopes with different slope angles and sand layer thicknesses, the LD increased with the increase in the slope angle and sand layer thickness, although the increase rate of the LD with the sand layer thickness exhibited an upper limit. The LD values from the seepage analysis agreed well with the results estimated from the laboratory SSCB mode test. Therefore, it can be concluded that the experimental methodology of the SSCB model test is one of the promising alternatives to efficiently evaluate the water-shielding performance of the CB system for an engineered slope.

Effect of thickness on moisture barrier properties of aluminum oxide using ozone-based atomic layer deposition

  • Juhyun Lee;Seokyoon Shin;Sejin Kwon;Woochool Jang;Hyeongsu Choi;Hyunwoo Park;Namgue Lee
    • Journal of Ceramic Processing Research
    • /
    • v.22 no.3
    • /
    • pp.253-257
    • /
    • 2021
  • Among various thin film encapsulation (TFE) methods, thin films prepared by atomic layer deposition (ALD) have been shown to provide superior protection against the permeation of moisture and oxygen. This technique has numerous of advantages such as excellent uniformity, precise thickness control, and strong adhesion. Therefore, with ozone-based ALD, we conducted the influence of the thickness of aluminum oxide (Al2O3) on moisture barrier properties. From the results of an electrical calcium test, Al2O3 had two distinctly different permeation regimes. Between 10 and 25 nm of Al2O3 thickness, the water vapor transmission rate (WVTR) decreased exponentially from 6.3 × 10-3 to 1.0 × 10-4 g m-2 day-1 (1/60 times). In contrast, as thickness increased from 25 to 100 nm, the WVTR values decreased by only two-thirds, from 1.0 × 10-4 to 6.6 × 10-5 g·m-2·day-1. To better understand the change from an exponential to a sub-exponential regime, defect density and refractive index of Al2O3 were measured. The thickness dependence on defect density and refractive index was analogous with one of moisture barrier performance. These results confirmed the existence of a critical thickness at which the WVTR decreased drastically.

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.

A Study on Tranquility by the Development of New Type Floating Breakwater (신형식부방파제의 개발과 정온도에 관한 연구)

  • Lee, Hyun Jin;Kim, Do Sam;Shin, Moon Seup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.154-164
    • /
    • 2013
  • In this study, a new type floating breakwater was proposed to improve the capability of wave attenuation compared with the existing floating breakwater in Wonjun Port, which is located in Masan City, Korea. In order to develop the optimal design, many different configurations considering the shape and location of vertical barrier and horizontal plate were examined based on the shape of existing floating breakwaters in Wonjun and Tongyeong Port. The analytical and numerical results of the new type floating breakwater showed better performance in long-period wave attenuation than the existing floating breakwater in Wonjun. Therefore, the new type floating breakwater can improve harbor tranquility in Wonjun Port.

High Performance Barrier Technologies for Tire Innerliner (타이어 인너라이너용 고차단화 기술)

  • Kang, Yong-Gu;Lee, Seong-Peal;Han, Min-Hyun
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.102-111
    • /
    • 2011
  • The innerliner for a tire has excellent impermeability, air retention and good flex properties. The innerliner offers a role to improve performance parameter, such as air retention and tire durability that is of praricular importance for commercial tires. In order to improve the gas barrier properties of a innerliner, most of the innerliner rubbers, such as a halogenated butyl rubber(HIIR), brominated poly(isobutylene-co-isoprene)(BIIR), brominated polyisobutylene-co-paramethylstyrene(BIMS) are used as nanocomposites with nano fillers such as silicates, graphite etc. Innerliners based on nanocomposites may allow gauge adjustments and permeability reductions with potential improvement in tire durability. This article discusses potential innerliner permeablity reduction and compounding parameters on the properties of nanocomposite based innerliners.

Nano-Composite's Mechanical and Radioactive Barrier Characteristics by Nano Size CNT & Graphite Particles Alignment (CNT와 Graphite 나노/마이크로 입자 배열에 의한 나노복합재의 제작과 기계적 강성 및 방사능 차폐 특성 평가)

  • Cho, Hee-Keun
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.355-362
    • /
    • 2013
  • Carbon particle based nanocomposites have been studied. Nanocomposites containing CNT and graphite particles were manipulated by aligning the micro/nano-size particles with electric field. Electric field is applied to the suspension of epoxy matrix and particulate inclusions in order to align them along the direction of the electric field. Particles aligned in a uniform direction act as a fiber in a CFRP composite. The mechanical strength and physical characteristics highly depend on particles' distribution pattern and amount. In this study, the characteristics of radioactive barrier are emphasized, which has been rarely discussed in the literature. A number of sample coupons were tested to verify their performance. The procedure of manufacturing nanocomposites by means of extremely small size particle alignment is presented in sequence. Several physical and structural performances of composites containing aligned and randomly distributed particles were compared. The results show particle alignment is very effective to enhance directional strength and radioactive barrier performance.

A FEASIBILITY STUDY ON THE ADVANCED PERFORMANCE INDICATOR CONCEPT FOR IMPROVING KINS SAFETY PERFORMANCE INDICATORS (SPI)

  • Lee, Yong-Suk;Cho, Nam-Chul;Chung, Dae-Wook
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.105-132
    • /
    • 2011
  • The concept of improved performance indicators (PIs) for use in the KINS Safety Performance Indicator (SPI) program for reactor safety area is proposed in this paper. To achieve this, the recently developed PIs from the USNRC that use risk information were investigated, and a feasibility study for the application of these PIs in Korean NPPs was performed. The investigated PIs are Baseline Risk Index for Initiating Events (BRIIE), Unplanned Scrams with Complications (USwC), and Mitigating System Performance Index (MSPI). Moreover, the thresholds of the existing safety performance indicators of KINS were evaluated in consideration of the risk and regulatory response to different levels of licensee performance in the graded inspection program.