• Title/Summary/Keyword: barometer

Search Result 101, Processing Time 0.031 seconds

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

Methodology of Correcting Barometer Using Moving Drone and RTK Receiver (동적 드론과 RTK 수신기를 이용한 기압계 보정정보 생성 방법론)

  • Kim, Suyeol;Yun, Jeonghyeon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.63-71
    • /
    • 2022
  • Barometers have been used to calculate altitude, and with the development of technology, barometer which had a large volume have now been reduced to about centimeter-level. The altitude calculation using barometer is proceeded using the relationship between reference sea level pressure and the pressure obtained by barometer, and for this, pre-calibration of the barometer is essential. In addition, the barometer has a certain level of bias from actual pressure due to production, and many smartphone manufacturers correct it during the manufacturing process, but it is difficult to correct errors caused by environmental variables. In this paper, we extended methodology of correcting barometer using static reference station to moving drone, and it was possible to calculate the altitude more accurately.

A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System (IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.

Accuracy Analysis using Assistant Sensor Integration on Various IMU during GPS Signal Blockage (GPS 신호 단절 상황에서 IMU 사양에 따른 보조센서 통합을 이용한 정확도 분석)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the performances of a medium grade IMU which is aimed for Mobile Mapping System and a low grade IMU for pedestrian navigation are analyzed through simulations under GPS signal blockage. In addition, an analysis on the accuracy improvement of barometer, electronic compass, or multi-sensor(combination of barometer and electronic compass) to correct medium grade or low grade IMU errors in the situation of GPS signal blockage is performed. With the medium grade IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 5m when the block time is over 30 seconds. When we correct IMU with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 60 seconds. In addition, barometer is more effective than the electronic compass when they are combined. In case of low grade IMU like MEMS IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 20m when the block time is over 15 seconds. When we correct INS with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 15 seconds in simulation results. On the contrary to medium grade IMU, electronic compass is more effective than the barometer in case of low velocity such as pedestrian navigation. It is expected that the analysis suggested a method to decrease position or attitude error using aided sensor integration when MMS or pedestrian navigation is operated under 1he environment of GPS signal blockage.

New calibration apparatus for a precise barometer (초정밀 기압계 교정을 위한 새로운 압력계 교정장치 개발)

  • 우삼용;이용재;최인묵;김부식;최종운
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.157-161
    • /
    • 2003
  • Nowadays there are increasing demands for more accurate measurement of atmospheric pressure according to the development of environmental industries. One of the most important pressure gauges for satisfying these demands is a quartz resonance barometer. In order to calibrate such an accurate barometer, laser/ultrasonic mercury manometers have been used. However, complexity and cost of mercury manometers made it out of use gradually. As a substitute, a gas-operated pressure balance is used for calibration of precise barometers. In such a case, commercially available pressure balances cannot be entirely suitable because consequent exposure of the piston, cylinder and masses to the atmosphere causes the problem of contamination. In this paper a device for changing the masses in situ without breaking the vacuum is described. This device made it possible to add or remove weights in the absolute mode, thereby greatly reducing the time between observations. At the same time, we investigated the characteristics of a commercial precise barometer using this new apparatus.

Step Length Estimation on a Slope Using Accelerometers and a Barometer (가속도계와 기압계를 이용한 경사면에서의 보행 거리 추정)

  • Hung, Tran Nhat;Suh, Young Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • Using a relationship between step length and accelerometer output, step length can be estimated. In this paper, we propose a new step length estimation algorithm, which can be used both for the plane and the slope by compensating the slope angle. The slope angle is estimated using a barometer and the slope angle is compensated by observing how the slope affects the step length estimation. The proposed algorithm is verified using five adult man walking data, where the average length error is about 3% regardless of the slope.

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.

Tightly-Coupled GPS/INS/Ultrasonic-Speedometer/Barometer Integrated Positioning for GPS-Denied Environments

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, Lawoo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • Accuracy of an integrated Global Positioning System (GPS) / Inertial Navigation System (INS) relies heavily on the visibility of GPS satellites. Especially, its accuracy is dramatically degraded in urban canyon due to signal obstructions due to large structures. In this paper, we propose a new integrated positioning system that effectively combines INS, GPS, ultrasonic sensor, and barometer in GPS-denied environments. In the proposed system, the ultrasonic sensor provides velocity information along the forward direction of moving vehicle. The barometer output provides height information compensated for the pressure variation due to fast vehicle movements. To evaluate the performance of the proposed system, an experiment was carried out by mounting the proposed system on a test car. By the experiment result, it was confirmed that the proposed system bears good potential to maintain positioning accuracy in harsh urban environments.

A Seamless Positioning System using GPS/INS/Barometer/Compass (GPS/INS/기압계/방위계를 이용한 연속 측위시스템)

  • Kwon, Jay-Hyoun;Grejner-Brzezinska, D.A.;Jwa, Yoon-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.47-53
    • /
    • 2006
  • In this contribution, an integration of seamless navigation system for the pedestrian is introduced. To overcome the GPS outages in various situations, multi-sensor of GPS, INS, electronic barometer and compass are considered in one Extented Kalman filter. Especially, the integrated system is designed for low-cost for the practical applications. Therefore, a MEMS IMU is considered, and the low quality of the heading is compensated by the electronic compass. In addition, only the pseudoranges from GPS measurements are considered for possible real-time application so that the degraded height is also controlled by a barometer. The mathematical models for each sensor with systematic errors such as biases, scale factors are described in detail and the results are presented in terms of a covariance analysis as well as the position and attitude errors compared to the high-grade GPS/INS combined solutions. The real application scenario of GPS outage is also investigated to assess the feasible accuracy with respect to the outage period. The description on the current status of the development and future research directions are also stated.

  • PDF

Numerical Simulation of Water Level Change at the Coastal Area in the East Sea with the Inverted Barometer Effect (역기압 효과를 반영한 동해 연안 수위 변동 수치 재현)

  • Hyun, Sang Kwon;Kim, Sung Eun;Jin, Jae Yull;Do, Jong Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • Sea water level variations are generally influenced by a variety of factors such as tides, meteorological forces, water temperature, salinity, wave, and topography, etc. Among non-tidal conditions, atmospheric pressure is one of the major factors causing water level changes. In the East Sea, due to small tidal range which is opposite to large tidal range of the Yellow Sea, it is difficult to predict water level changes using a numerical model, which consider tidal forcing only. This study focuses on the effects of atmospheric pressure variations on sea level predictions along the eastern coast of Korea. Telemac-2D model is simulated with the Inverted Barometer Effect(IBE), and then its results are analyzed. In comparison between observed data and predictions, the correlation of prediction with IBE and tide is better than that of tide-only case. Therefore, IBE is strongly suggested to be considered for the numerical simulations of sea level changes in the East Sea.