• Title/Summary/Keyword: bar cover

Search Result 142, Processing Time 0.021 seconds

A Study on the Improvement of Durability Design of Underground RC Structures (RC 지하구조물의 내구성설계 개선에 관한 연구)

  • Im, Jung-Soon;Bahng, Yun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.13-18
    • /
    • 2007
  • The research was performed to review the design factors which affect the durability of structures. For the study, domestic and foreign literature review were performed on various design criteria. Based on Korean standard specifications, the results showed that the durability of structure as the diameter of reinforcing steel bar becomes smaller and the distance between reinforcing bar is closer than the normal gap. The results were also presented that the minimum required bar cover is 6.6cm to obtain the durability index value. In addition, the maximum limited bar cover was 12cm considering the durability index and the change of increasing value of durability index. In case that there is no specified regulation for the bar cover thickness change, the durability life by neutralization is proportional to the thickness of bar cover.

Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete

  • Shang, Feng;An, Xuhui;Kawai, Seji;Mishima, Tetsuya
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.403-419
    • /
    • 2010
  • The bond mechanism for reinforcing bars in concrete is equivalent to the normal contact and friction between the inclined ribs and the surrounding concrete. Based on the contact density model for the computation of shear transfer across cracks, an open-slip coupled model was developed for simulating three-dimensional bond behavior for reinforcing bars in concrete. A parameter study was performed and verified by simulating pull-out experiments of extremely different boundary conditions: short bar embedment with a huge concrete cover, extremely long bar embedment with a huge concrete cover, embedded aluminum bar and short bar embedded length with an insufficient concrete cover. The bar strain effect and splitting of the concrete cover on a local bond can be explained by finite element (FE) analysis. The analysis shows that the strain effect results from a large local slip and the splitting effect of a large opening of the interface. Finally, the sensitivity of rebar geometry was also checked by FE analysis and implies that the open-slip coupled model can be extended to the case of plain bar.

An experimental study on corrosion properties of reinforcing steel under environment of complex deterioration (표면피복종류에 따른 복합열화환경하의 철근콘크리트 부식특성에 관한 실험적 연구)

  • 조봉석;김영덕;윤종기;김재환;김용로;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.86-89
    • /
    • 2003
  • It is recognized that reinforcement corrosion is the main distress behind the present concern regarding concrete durability. In this study, to confirm corrosion of reinforced concrete affected by thickness of cover, kinds of surface coating, measured electric potential, ratio of corrosion area, weight reduction, corrosion velocity of steel bar under environment of complex deterioration. The results showed that an increase in age also increases corrosion of steel bar. Ratio of corrosion area is largely related to ratio of weight reduction. as well, corrosion of steel bar by thickness of cover is superior to l0mm thick than 20mm thick. It showed that an increase in thickness of cover prevent steel bar from deteriorating. The results of this study showed that corrosion velocity was affected by thickness of cover, kinds of surface coating. data on the development of corrosion velocity made with none, organic B, organic A, inorganic B, and inorganic A is shown.

  • PDF

Direct Tensile Test of GFRP Bar Reinforced Concrete Prisms

  • Choi Dong-Uk;Lee Chang-Ho;Ha Sang-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.323-326
    • /
    • 2005
  • Uniaxial tension test of Glass Fiber Reinforced Polymer (GFRP) bar reinforced concrete prisms was performed. The objective was to investigate the adequate cover thickness of the GFRP rebars. The tension stiffening effect of GFRP bar reinforced concrete was also studied. The test variables included rebar types (conventional steel rebar and two different GFRP rebars) and cover thicknesses (five different cover thicknesses ranging between 1-3db). Normal strength concrete was used. Cracking patterns on concrete surface and cracking loads were careful1y observed during the direct tensile test. The test results indicated that the adequate cover thickness of the GFRP rebars may even be larger than that of the steel rebars and that the cover thickness of 2db commonly specified for the GFRP rebars may not be large enough. The tension stiffening effect of the GFRP rebars was also quantified and documented from the test results.

  • PDF

An Experimental Study on the Shear Resistance of Dowel Bars (장부철근의 전단저항에 대한 실험적 연구)

  • 신장호
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.216-223
    • /
    • 1995
  • This research is aimed to investigate the influence of the structural parameters on dowel action of reinforcing bars in reinforced concrete members. I~ollowing the previous research, $^{(3.6)}$ a total of forty two specimens were tested to scrutinize the dowel action of reinforcing bars. Concrete cover, reinforcing bar size and bar distance were taken as main test variables for constant compressive strength of concrete. ]+om the test results, the structural behavior of all specimens was almost linear up to failure load. It is seen that dowel force increases as concrete cover increases. Reinforcing bar size and bar distance hardly affects dowel force. It is found that the dowel forces obtained by this experimental research is relatively close to that of regression analysis results and White's equation.

Tension Stiffening and Bond Length of Reinforced Concrete Members Subjected to Uniaxial Tension (1축 인장 부재의 인장강성 및 부착길이 효과)

  • 조능호;정원기;강희철;서정문;전영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.873-878
    • /
    • 2000
  • Tension stiffening effects of reinforced concrete member with large diameter bar, mainly used at reactor building of nuclear power plant, are studied by uniaxial structural tests. Bond length and stress of steel bar, size of steel bar, and compressive strength of concrete are evaluated to tension stiffening by uniaxial tests. Problems and solution during the uniaxial test are suggested. The prevent splitting cracks, concrete cover-to-bar diameter ratio $c/d_{b}$ is kept 2.6~2.8. Because the bond length is increased as the size of steel bar, the specimen length of the D35 steel bar is required at least 2.0 m. The specimen length must be decided with bond length as well as concrete cover-to-bar diameter ratio to prevent splitting crack.

Bond Stress-Strain Predict Model with Inner Cover Thickness of Steel Wire Used in Void Deck Plate (중공 데크플레이트에 사용된 철선의 내부피복두께에 따른 부착응력-변형률 예측모델)

  • Kim, Hee-Hyeon;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • In case of evaluating the bond stress of a void deck plate using a wire steel, there is no standard formula considering both the influence on the void and the type of the reinforcing bar. Therefore we proposed a model equation considered the bond characteristics of the void deck plate. A total of 46 specimens was carried out a direct pull-out test and the test variables were the presence of a void body, type of reinforcing bar, the inner cover thickness according to the location of reinforcing bars and bond region. As a result of the comparison between the steel bar and steel wire, the bond stress of the steel wire with the relative rib area of 0.071 is 4.5 ~ 28.58% lower than that of the steel bar with 0.092 and the bond stress reduction rate increases when the inner cover thickness is insufficient. In the case of the inner cover thickness of $1.7d_b$ and $2.7d_b$, the bond stress was reduced to 48.7 ~ 68.4%. In the inner cover thickness was $4.9d_b$ and $5.2d_b$, the bond stresses were equivalent to those of the solid specimens. It was confirmed that the average bond stress and strain were affected by the inner cover thickness. Therefore the predicted model for one module of the void deck plate is proposed and verified by considering the bond characteristics of the void deck plate.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete (고강도, 고유동 Belite 콘크리트의 부착성능)

  • 김상준;조필규;이세웅;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

An experimental study on Bond strength of Reinforcing steel to High-performance Concrete using Belite Cement (Belite 시멘트를 이용한 고성능 콘크리트의 철근 부착성능 실험연구)

  • 조필규;김상준;강지훈;김영식;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.408-415
    • /
    • 1997
  • Bond strength of reinforcing bar to high-performance concrete using Belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that for the group with portland cement I using superplasticizer additional slump does not decrease the bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfy the modification factor for top reinforcement. The result also show that bond strength is function of square root of concrete compressive strength and cover thickness. More detailed evaluation will be conducted from the test specimen with high strength concrete using the belite cement.

  • PDF