• Title/Summary/Keyword: bankruptcy prediction model

Search Result 91, Processing Time 0.02 seconds

SVM based Bankruptcy Prediction Model for Small & Micro Businesses Using Credit Card Sales Information (신용카드 매출정보를 이용한 SVM 기반 소상공인 부실예측모형)

  • Yoon, Jong-Sik;Kwon, Young-Sik;Roh, Tae-Hyup
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.448-457
    • /
    • 2007
  • The small & micro business has the characteristics of both consumer credit risk and business credit risk. In predicting the bankruptcy for small-micro businesses, the problem is that in most cases, the financial data for evaluating business credit risks of small & micro businesses are not available. To alleviate such problem, we propose a bankruptcy prediction mechanism using the credit card sales information available, because most small businesses are member store of some credit card issuers, which is the main purpose of this study. In order to perform this study, we derive some variables and analyze the relationship between good and bad signs. We employ the new statistical learning technique, support vector machines (SVM) as a classifier. We use grid search technique to find out better parameter for SVM. The experimental result shows that credit card sales information could be a good substitute for the financial data for evaluating business credit risk in predicting the bankruptcy for small-micro businesses. In addition, we also find out that SVM performs best, when compared with other classifiers such as neural networks, CART, C5.0 multivariate discriminant analysis (MDA), and logistic regression.

Bankruptcy Prdiction Based on Limited Data of Artificial neural Network -in Textiles and Clothing Industries- (한정된 데이타하에서 인공신경망을 이용한 기업도산예측-섬유 및 의류산업을 중심으로-)

  • 피종호;김승권
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.733-736
    • /
    • 1996
  • Neural Network(NN) is known to be suitable for forecasting corporate bankruptcy because of discriminant capability. Bankruptcy prediciton on NN by now has mostly been studied based on financial indices at specific point of time. However, the financial profile of corporates fluctuates within a certain range with the elapse of time. Besides, we need a lot of data of different bankrupt types in order to apply NN for better bankruptcy prediciton. Therefore, we have decided to focus on textiles and clothing industries for bankruptcy prediction with limited data. One part of the collected data was used for training and calibration, and the other was used for verification. The model makes a learning with extended data from financial indices at specific point of time. The trained model has been tested and we could get a high hitting ratio relatively.

  • PDF

Application of Random Over Sampling Examples(ROSE) for an Effective Bankruptcy Prediction Model (효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용)

  • Ahn, Cheolhwi;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.525-535
    • /
    • 2018
  • If the frequency of a particular class is excessively higher than the frequency of other classes in the classification problem, data imbalance problems occur, which make machine learning distorted. Corporate bankruptcy prediction often suffers from data imbalance problems since the ratio of insolvent companies is generally very low, whereas the ratio of solvent companies is very high. To mitigate these problems, it is required to apply a proper sampling technique. Until now, oversampling techniques which adjust the class distribution of a data set by sampling minor class with replacement have popularly been used. However, they are a risk of overfitting. Under this background, this study proposes ROSE(Random Over Sampling Examples) technique which is proposed by Menardi and Torelli in 2014 for the effective corporate bankruptcy prediction. The ROSE technique creates new learning samples by synthesizing the samples for learning, so it leads to better prediction accuracy of the classifiers while avoiding the risk of overfitting. Specifically, our study proposes to combine the ROSE method with SVM(support vector machine), which is known as the best binary classifier. We applied the proposed method to a real-world bankruptcy prediction case of a Korean major bank, and compared its performance with other sampling techniques. Experimental results showed that ROSE contributed to the improvement of the prediction accuracy of SVM in bankruptcy prediction compared to other techniques, with statistical significance. These results shed a light on the fact that ROSE can be a good alternative for resolving data imbalance problems of the prediction problems in social science area other than bankruptcy prediction.

SOHO Bankruptcy Prediction Using Modified Bagging Predictors (Modified Bagging Predictors를 이용한 SOHO 부도 예측)

  • Kim, Seung-Hyuk;Kim, Jong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.15-26
    • /
    • 2007
  • In this study, a SOHO (Small Office Home Office) bankruptcy prediction model is proposed using Modified Bagging Predictors which is modification of traditional Bagging Predictors. There have been several studies on bankruptcy prediction for large and middle size companies. However, little studies have been done for SOHOs. In commercial banks, loan approval processes for SOHOs are usually less structured than those for large and middle size companies, and largely depend on partial information such as credit scores. In this study, we use a real SOHO loan approval data set of a Korean bank. First, decision tree induction techniques and artificial neural networks are applied to the data set, and the results are not satisfactory. Bagging Predictors which has been not previously applied for bankruptcy prediction and Modified Bagging Predictors which is proposed in this paper are applied to the data set. The experimental results show that Modified Bagging Predictors provides better performance than decision tree inductions techniques, artificial neural networks, and Bagging Predictors.

  • PDF

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

비례위험모형에서 비례성 가정에 대한 검정: 도산모형에의 응용

  • Nam Jae-U;Kim Dong-Seok;Lee Hoe-Gyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.615-618
    • /
    • 2004
  • The previous quantitative bankruptcy prediction models cannot include time dimension. To overcome this limit, various dynamic models using survival analysis are developed recently. This paper emphasizes that the proportionality assumption must be adapted with caution when the Cox's proportional hazard model is used to explain bankruptcy. It is shown that a non-proportional hazard model including a change point model is a proper alternative, when the proportionality assumption is violated by the change of macroeconomic environment, such as the financial crisis in 1997.

  • PDF

Forecasting Corporate Bankruptcy with Artificial Intelligence (인공지능기법을 이용한 기업부도 예측)

  • Oh, Woo-Seok;Kim, Jin-Hwa
    • Journal of Industrial Convergence
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 2017
  • The purpose of this study is to evaluate financial models that can predict corporate bankruptcy with diverse studies on evaluation models. The study uses discriminant analysis, logistic model, decision tree, neural networks as analyses tools with 18 input variables as major financial factors. The study found meaningful variables such as current ratio, return on investment, ordinary income to total assets, total debt turn over rate, interest expenses to sales, net working capital to total assets and it also found that prediction performance of suggested method is a bit low compared to that in literature review. It is because the studies in the past uses the data set on the listed companies or companies audited from outside. And this study uses data on the companies whose credibility is not verified enough. Another finding is that models based on decision tree analysis and discriminant analysis showed the highest performance among many bankruptcy forecasting models.

  • PDF

Developing Medium-size Corporate Credit Rating Systems by the Integration of Financial Model and Non-financial Model (재무모형과 비재무모형을 통합한 중기업 신용평가시스템의 개발)

  • Park, Cheol-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.71-83
    • /
    • 2008
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, in this study we present a medium sized corporate credit rating system by using Artificial Neural Network(ANN) and Analytical Hierarchy Process(AHP). Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the ANN and AHP model using both financial information and non-financial information. Finally, the credit ratings of each firm are assigned by the proposed method.

Bankruptcy Prediction using Fuzzy Neural Networks (퍼지신경망을 이용한 기업부도예측)

  • 김경재;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.135-147
    • /
    • 2001
  • This study proposes bankruptcy prediction model using fuzzy neural networks. Neural networks offer preeminent learning ability but they are often confronted with the inconsistent and unpredictable performance for noisy financial data. The existence of continuous data and large amounts of records may pose a challenging task to explicit concepts extraction from the raw data due to the huge data space determined by continuous input variables. The attempt to solve this problem is to transform each input variable in a way which may make it easier fur neural network to develop a predictive relationship. One of the methods selected for this is to map each continuous input variable to a series of overlapping fuzzy sets. Appropriately transforming each of the inputs into overlapping fuzzy membership sets provides an isomorphic mapping of the data to properly constructed membership values, and as such, no information is lost. In addition, it is easier far neural network to identify and model high-order interactions when the data is transformed in this way. Experimental results show that fuzzy neural network outperforms conventional neural network for the prediction of corporate bankruptcy.

  • PDF

An Empirical Study on the Failure Prediction for KOSDAQ Firms (코스닥기업의 부실예측에 대한 실증 분석)

  • Park, Hee-Jung;Kang, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.670-676
    • /
    • 2009
  • Bankruptcy of firms in Korea can cause distress of financial institutions because these institutions have disterssed bond. Accordingly, social and economical spill-over effects by these results are very big. Even after the difficult times of IMF crisis had ended, bankruptcy of information-based small-medium companies and venture firms listed on the KOSDAQ has been continued. In this context, this study developed and adopted failure prediction models for which discriminant analysis was used. Samples of this study was 81 firms respectively for both failed and non-failed firms listed on the KOSDAQ between the year of 2000 and 2007. The results of this study are as follows. First, the accuracy of classification of the model by years was $74.5%{\sim}76.5%$, and the accuracy of classification of the mean model was $69.6%{\sim}80.4%$. Among the models, the mean model of -one year, -two years, and -three years was highest in accuracy of classification (80.4%). Second, accuracy of prediction of final model adopted on validation samples showed 85% before one year of bankruptcy. The results of this study may be significant in that the results may be used as early warning system for bankruptcy prediction of KOSDAQ firms.