• Title/Summary/Keyword: bandgap

Search Result 643, Processing Time 0.025 seconds

Current Variation in ZnO Thin-Film Transistor under Different Annealing Conditions (ZnO 박막트랜지스터의 어닐링 조건에 따른 전류 변화)

  • Yoo, Dukyean;Kim, Hyoungju;Kim, Junyeong;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.63-66
    • /
    • 2014
  • ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. However, off-current characteristics of ZnO thin-film transistor (TFT) need improvements. In this work we studied the variation in ZnO TFT current under different annealing conditions. Annealing usually modifies gas adsorption at grain boundaries of ZnO. When oxygen is adsorbed, electron density decreases due to strong electronegativity of the oxygen, and TFT current decreases as a result. Our experiments showed that current increased after vacuum annealing and decreased after air annealing. We explain that the change of off-current is caused by the desorption and adsorption of oxygen at the grain boundaries.

The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers

  • Lee, Da Jung;Yun, Sun Jin;Lee, Seong Hyun;Lim, Jung Wook
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.730-733
    • /
    • 2013
  • In this work, buffer layers with various conditions are inserted at an n/i interface in hydrogenated amorphous silicon semitransparent solar cells. It is observed that the performance of a solar cell strongly depends on the arrangement and thickness of the buffer layer. When arranging buffer layers with various bandgaps in ascending order from the intrinsic layer to the n layer, a relatively high open circuit voltage and short circuit current are observed. In addition, the fill factors are improved, owing to an enhanced shunt resistance under every instance of the introduced n/i buffer layers. Among the various conditions during the arrangement of the buffer layers, a reverse V shape of the energy bandgap is found to be the most effective for high efficiency, which also exhibits intermediate transmittance among all samples. This is an inspiring result, enabling an independent control of the conversion efficiency and transmittance.

Wide Tuning Range Varactor Diodeless LC-tank VCO (Miller 커패시터를 이용한 넓은 가변 범위의 LC-tank 전압 제어 발진기)

  • Ryu, J.Y.;Ryu, S.T.;Jung, S.H.;Cho, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2579-2581
    • /
    • 2001
  • 넓은 가변 범위를 가지는 LC 탱크 전압 제어 발진기에 관해 본 논문에서 소개하고자 한다. LC 탱크 전압 제어 발진기의 발진을 소멸시키는 밀러 증폭기의 ESR을 제거함으로써 넓은 가변 범위를 얻을 수 있다. LC 탱크 전압 제어 발진기는 발진기 코어와 버퍼, 밴드갭(bandgap) 기준 전압 발생기 그리고 드라이브 증폭기로 구성되어 있다. 발진기 코어는 1.3mA의 전류를 소모하고 약 1GHz의 가변 범위를 가진다. 출력주파수의 가변 범위내에 발진기의 출력 전력은 3dBm 이내로 변한다. 이러한 LC 탱크 전압 제어 발진기는 BiCMOS 공정을 이용하여 제작되었고 2.7V 단일 전원에서 31.5mW의 전력을 소모한다.

  • PDF

Effect of Substrate Temperature on the Properties of ZnO Transparent conducting Thin Film Prepared by the Vapour Spraying Method (분사증기법에 의해 형성된 ZnO 투명전도막에서 기판온도가 막 특성에 미치는 영향)

  • 이환수;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.436-447
    • /
    • 1994
  • ZnO transparent conducting thin film, which is a strong candidate for a transparent electrical contact in optoelectronic devices, was prepared by the vapour spraying method on the slide glass in nitrogen ambient at the atmospheric pressure. The structural, optical and electrical properties of films show a strong dependence on substrate temperature, and the optimum range of deposition temperature existed to obtain TCO(Transparent Conducting Oxide) films. At the higher temperatures, milky films were obtained. In such optimum range, the bandgap in ZnO films was determined from the spectral dependence of absorption coefficient and electrical characteristics were characterized with by the Hall mobility and carrier concentration.

  • PDF

A Study on the Photoinduced Dichroism in Amorphous Chalcogenides as the function of Deposition Angle and Annealing conditions (증착가도 및 열처리조건에 따른 비정질 칼코게나이드의 광유기 이색성 현상에 관한 연구)

  • 박수호;전진영;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.34-38
    • /
    • 1997
  • The linear dichroism in obliquely deposited amorphous As$_{40}$ /Ge$_{10}$/Se$_{15}$ /S$_{35}$ thin films has been studied using a sub-bandgap exposure by He-Ne laser. As increasing the deposition angle, the magnitude of 야chroism in as-deposited thin films was enhanced to about 10%, while that of the films annealed abode T$_{g}$ before illumination was nut enhanced at all.l.l.l.l.

  • PDF

Status of Silicon Carbide as a Semiconductor Device (SiC 반도체 기술현황과 전망)

  • 김은동
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-16
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열 전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도율의 WBG(Wide Band-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드 갭(band gap: E$_{g}$)이 높을 뿐만이 아니라 절연파괴강도(E$_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, v$_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황 에 대하여 살펴보고자 한다.

  • PDF

Review on Gallium Nitride HEMT Device Technology for High Frequency Converter Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • This paper presents a review of an improved high power-high frequency III-V wide bandgap (WBG) semiconductor device, Gallium Nitride (GaN). The device offers better efficiency and thermal management with higher switching frequency. By having higher blocking voltage, GaN can be used for high voltage applications. In addition, the weight and size of passive components on the printed circuit board can be reduced substantially when operating at high frequency. With proper management of thermal and gate drive design, the GaN power converter is expected to generate higher power density with lower stress compared to its counterparts, Silicon (Si) devices. The main contribution of this work is to provide additional information to young researchers in exploring new approaches based on the device's capability and characteristics in applications using the GaN power converter design.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.

Characteristics of InN thin films fabricated by reactive sputtering (반응성 스퍼터링에 의해 제작된 InN 박막의 특성)

  • 김영호;정성훈;문동찬;송복식;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.173-176
    • /
    • 1997
  • The III-V nitride semiconductor InN thin films which have the direct bandgap in visible light wavelength region have been deposited on Si(100) substrates and AIN/Si(100) substrates by rf reactive sputtering. InN thin films have been investigated on the structural, and electrical properties according to the sputtering parameters such as total pressure, rf power, and substrate temperature. It is found that optimal conditions required for fabricating InN thin films with high crystal Quality, low carrier concentration, high Hall mobility are total pressure 5mTorr, rf power 60W, substrate temperature 6$0^{\circ}C$ . InN thin films deposited on the AIN(60min.)/Si(100) substrates arid AIN(120min.)/Si(100) substrates showed remarkably high crystal quality and electrical properties. It is known that AIN buffer layer is to decrease free energy at interface between InN film and Si substrate, and then promoting lateral growth of InN films.

  • PDF

Ag/a-$Se_{75}$$Ge_{25}$박막의 Ag Doping Mechaism 해석[I]

  • 김민수;이현용;정홍배;이영종
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.113-115
    • /
    • 1994
  • We considered the ion and photo-induced properties as a function of wavelength by exposing the light over the band gap of a-Ag/a-$Se_{75}$$Ge_{25}$ and the low-energy defocused $Ga^{+}$ ion beam on Ag/a-$Se_{75}$$Ge_{25}$ thin film. This film acts as a negative resist for photo or ion beam lithography. We observed that the absorbance coefficient decreased with increasing the photo-exposing time and exposing the ion beam. The bandgap shifts toward longer wavelength called a "darkening effect" are observed in the films exposed to both photons and ions. We suggest that a primary step in the Ag layer and a secondary step is in a-$Se_{75}$$Ge_{25}$ film layer.

  • PDF