• Title/Summary/Keyword: bamboo fibers

Search Result 41, Processing Time 0.021 seconds

A Study on the Utilization of Ingredients and Fibers from Korean Bamboo Species in Value-added Industry: Part 2. Preparation and Characterization of Bamboo Fibers (국내산 죽종의 화학성분 및 섬유소 이용에 관한 연구 (제2보) - 대나무 섬유의 제조 및 특성 -)

  • Kang, Kyu-Young;Yoon, Seung-Lak;Jeon, Kwon-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.69-76
    • /
    • 2012
  • The bamboo fibers from three Korean bamboo species, Moso, Henon and Timber bamboo, were prepared by disintegration after thermal treatment. The samples were prepared according to the age of growth; bamboo shoots, 20 days and 50 days of growth. The fiber quality was also investigated by morphological and chemical analyses. There was no big difference in the dry mass of fibers among the three bamboo species. However, the dry mass of fibers from 50 days of growth was increased by 34%, whereas it was ranged in 9-20% in the case of fibers from bamboo shoots and 20 days of growth. In the results of morphological analysis, the fibers could be classified as the fibers from metaxylem, the fibers from parenchyma and the fines produced during disintegration. The fibers from 50 days of growth were separated from metaxylem, whereas the fibers from bamboo shoots and 20 days of growth were mainly consisted of fibers from metaxylem and parenchyma. The chemical analysis of fibers showed that the contents of carbohydrates, lignin and extractives were not much affected by thermal treatment.

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Comparative Study of Mechanical and VOC Properties According to Manufacturing Conditions of Glass Fiber/Bamboo Fiber/PP Composites (유리섬유/대나무섬유/PP 복합재의 제조 조건에 따른 기계적 및 VOC 특성 비교 연구)

  • Lee, Su-kyoung;Park, Tae-sung;An, Seung-kook
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.153-160
    • /
    • 2021
  • In this study, composite materials were prepared by varying the content of glass fiber and bamboo fiber in PP/glass fiber/bamboo fiber. Experiments were conducted to confirm the mechanical properties(tensile, impact and burst strength) and volatile organic compound content of the bamboo fiber composite prepared under these conditions. An improvement in the main properties was observed at a fiber content of 30wt%. When the fiber fraction was increased above 30wt%, the mechanical properties tended to decrease due to the agglomeration of fibers at higher load fractions. In addition, the content of volatile organic compounds increased as the content of bamboo fibers increased, which is thought to be due to the volatile organic compounds generated during the manufacturing process of the composite material being present in the composite material without escaping from the pores of the bamboo fibers and volatilizing at a certain temperature. As a result of confirming the physical properties of the composite, it is considered that the optimal mixing condition is 30wt% of bamboo fiber for the composite produced by varying the amount of bamboo fiber composite. In the future, it is thought that follow-up experiments to confirm and improve the pre-treatment conditions for reducing the content of volatile organic compounds in the manufactured composite material are possible.

Study on the Improvement of Flame Retardancy of Bamboo Fiber Using Eco-Friendly Liquid Flame Retardant (친환경 액상 난연제를 이용한 대나무섬유의 난연화 연구)

  • Dong-Woo, Lee;Maksym, Li;Jung-il, Song
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.456-462
    • /
    • 2022
  • Since natural fibers are highly flammable, it is not easy to make them flame retardant. In this study, a liquid flame retardant based on phytic acid, APTES, and Thiourea, which are flame retardant candidates derived from nature, was prepared and its performance was verified through flame retardant treatment and flame retardancy evaluation of bamboo fibers. When a liquid flame retardant is used, it is possible to treat a large amount of natural fibers with flame retardant treatment. Nine types of flame-retardant treated bamboo fibers were prepared according to the Taguchi design of experiment method. Thereafter, vertical burning test and microcalorimeter test were performed for flame retardancy evaluation, and the surface of natural fibers before and after flame-retardant treatment was compared using scanning electron microscope. The results show that phytic acid has a significant effect on improving the flame retardancy of natural fibers. Through microstructure analysis, it was assumed that the phytic acid helps flame retardant to uniformly adhere to the surface of natural fibers. If such research results are utilized, it is possible to make a large amount of natural fibers high flammability in an eco-friendly way, which is expected to be advantageous for the application of prototypes.

Effects of Solvent Treatment of Bamboo Fiber on Physical Properties of Polypropylene/Glass Fiber/Bamboo Fiber Composite (엔진커버용 폴리프로필렌/유리섬유/대나무섬유 복합체의 물리적 특성에 대한 대나무섬유의 용제 처리의 영향)

  • Lee, Su Kyoung;Lim, Sung Wook;Shin, Hyung Shik;Woo, Seung-Keon;Park, Eun Young
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, the effects of surface treatment of bamboo fiber on the physical properties of polypropylene(PP)/glass fiber(GF)/Bamboo fiber(BF) composite for engine cover were investigated. PP, GF and BF were fixed at 40%, 40% and 20% and the surface of bamboo fibers were treated to 0.5, 1.0 and 2.0% as an acid and alkali solution. PP/GF/BR composites using surface treated bamboo fibers were prepared and their tensile strength, bursting strength and impact strength were measured by universal testing machine(UTM). The composites with alkali treated bamboo fiber showed better mechanical properties than the acid treated composites. It was checked that the optimum alkali content was at 1.0% from the results of mechanical properties. The effect of surface treatment on the mechanical properties was confirmed by SEM images of fractured surface.

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

Manufacture of Oriental Painting Paper (Hwaseonji) Using Various Kinds of Plant Fibers (다양한 섬유재료를 이용한 화선지의 제조와 그 특성)

  • 문성필;최영재;강석근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.79-84
    • /
    • 2003
  • Oriental painting paper (Hwaseonji) was prepared from various kinds of plant fibers and its physical properties were investigated. The fibers used were classified into three different length of fibers; long fiber (<1.8 mm), medium fiber (1.4-1.8 mm) and short fiber (>1.4 mm). The fibers were mixed in the ratio of 15% long fiber, 25% medium fiber and 60% short fiber. The Hwaseonji prepared from mixing of the bamboo or rice straw pulp as a short fiber with the long and medium fibers showed excellent physical properties with a high smoothness and uniformity of Chinese ink blot. Mixing with LBKP as a short fiber was resulted in low physical properties, smoothness and wide ink blot. The properties of Hwaseonji, such as ink absorption, roughness and smoothness, may be predicted from the correlation of density with Chinese ink blot and smoothness.

Development of Modified Printing Hanji Using Alternative Plant Fibers (II) - Printability of Printing Hanji Made of Alternative Plant Fibers - (대체 식물 자원을 이용한 인쇄용 개량한지의 개발 연구(제 2보) - 대체 식물 자원 섬유를 이용한 개량 한지의 인쇄 특성 연구 -)

  • Lee, Ji-Young;Seo, Jeong-Min;Kim, Chul-Hwan;Eom, Tae-Jin;Park, Hyun-Jin;Kim, Sung-Ho;Kim, Gyeong-Chul
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.16-23
    • /
    • 2011
  • This study was carried out to develop the printing Hanji made of mixed raw materials with mulberry bast fibers and alternative plant fibers such as bamboo, soybean stalks, pepper stalk and sea tangle. All alternative plant fibers were produced by the kraft pulping method with 2 stages of bleaching, and used to prepare the modified traditional paper, Hanji for printing purpose. Printing quality of modified Hanji was analyzed by measuring area and Formcircle of halftones and comparing a letter shape printed on paper. The Hanji made of 60% of mulberry bast fibers and 40% of bamboo bleached kraft pulp showed the best printing quality with the smallest area and the largest Formcircle in all modified Hanji. Through the image analysis of form circles of the letters printed on the Hanji, it could also be confirmed that the best printability of the modified Hanji was made using bamboo fibers.

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.

Spalling resistance and mechanical performance of UHPC under high temperature using hybrid natural and artificial fibers

  • Arash K. Pour;Amir Shirkhani;Ehsan Noroozinejad Farsangi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.177-195
    • /
    • 2024
  • This research plans to investigate the simultaneous impact of bamboo fibers (BF) and steel fibers (SF) on the mechanical and spalling characteristics of ultra-high-performance concrete (UHPC) exposed to high temperatures (HT). To this aim, 25 mixtures were made and assessed. BF was added at five contents of 0, 2.5, 5, 7.5 and 10 kg/m3. Additionally, SF was used at five weight contents: 0%, 1%, 2%, 3% and 4%. Specimens were exposed to temperatures ranging between 25℃ and 800℃. Thus, com-pressive, tensile, and flexural strengths, elastic moduli, mass loss, and permeability were measured. Experiments revealed that the simultaneous use of low BF and SF contents could totally prevent spalling of UHPC, but the use of either SF or BF alone could not prevent spalling at high levels of fibers. Besides, the synergetic positive impact of BF and SF on the spalling resistance of UHPC was by reason of the rise of BF' permeability and the bridging role of SF at HT. Moreover, it was concluded that the use of SF could moderate the adverse influence of BF on the compressive resistance of UHPC.