• Title/Summary/Keyword: ball driving

Search Result 92, Processing Time 0.02 seconds

A Study on the Driving System Using Ball Screw (볼나사를 이용한 이송계에 관한 연구)

  • 이상조;남원우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.981-984
    • /
    • 1995
  • The feed system using ball screw is constructed by ball screw, support bering and LM guide, and servo system for driving ball screw. AC servo motr drives ball screw which was connected by coupling. In this study, a new axial direction dynamic modeling of ball screw driving system was developed, and forced vibraition test using the impact hammer was experimented. The simulation result is compared with experimental result, which defines the reliability of mathematical modeling.

  • PDF

Driving Control System applying Position Recognition Method of Ball Robot using Image Processing (영상처리를 이용하는 볼 로봇의 위치 인식 방법을 적용한 주행 제어 시스템)

  • Heo, Nam-Gyu;Lee, Kwang-Min;Park, Seong-Hyun;Kim, Min-Ji;Park, Sung-Gu;Chung, Myung-Jin
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.148-155
    • /
    • 2021
  • As robot technology advances, research on the driving system of mobile robots is actively being conducted. The driving system of a mobile robot configured based on two-wheels and four-wheels has an advantage in unidirectional driving such as a straight line, but has disadvantages in turning direction and rotating in place. A ball robot using a ball as a wheel has an advantage in omnidirectional movement, but due to its structurally unstable characteristics, balancing control to maintain attitude and driving control for movement are required. By estimating the position from an encoder attached to the motor, conventional ball robots have a limitation, which causes the accumulation of errors during driving control. In this study, a driving control system was proposed that estimates the position coordinates of a ball robot through image processing and uses it for driving control. A driving control system including an image processing unit, a communication unit, a display unit, and a control unit for estimating the position of the ball robot was designed and manufactured. Through the driving control experiment applying the driving control system of the ball robot, it was confirmed that the ball robot was controlled within the error range of ±50.3mm in the x-axis direction and ±53.9mm in the y-axis direction without accumulating errors.

Effect of Weight Ball Throw Training on Weight Shifting of Lower Body, Head Speed of Club, and Driving Distance of Amateur Golfers

  • Choi, Woo-Jin;Kim, Tack-Hoon;Oh, Dong-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.111-117
    • /
    • 2017
  • PURPOSE: To determine the effect of weight ball throw training as a preparatory exercise before golf practice for 8 weeks on back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. METHODS: A total of 18 subjects were randomly assigned to the experimental group (n=9) and the control group (n=9), respectively. For the experimental group, Weight ball throw training was provided to the height of waist and shoulder similar to golf swing with the following schedule: 3 kg weight ball throw training from the first week to the 4th week; 5 kg weight ball throw training from the 5th week to the 8th week. Before and after 8 weeks of training, back muscle strength, weight shifting of lower body, head speed of club, and driving distance of subjects in the two groups were measured. RESULTS: The experimental group showed significant differences in rotational back extension torque, weight shifting of lower body, head speed of club, and driving distance during golf swing (p<.05). However, the control group only showed significant difference in driving distance during golf swing (p<.05). Back extension torque, weight shifting of lower body, and head speed of club showed significant differences between the two groups during golf swing (p<.05). CONCLUSION: Weight ball throw training can positively change rotational back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. Therefore, it might be used as an effective warming up exercise for amateur golfers.

Development of Indoor Locomotion Assistive Robot, Ball-Chair, for the Elderly (고령자를 위한 실내 이동 보조 로봇 볼체어의 개발)

  • Kim, Woo-Yong;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.799-807
    • /
    • 2014
  • This paper describes the development of an indoor locomotion assistive robot, Ball-Chair, comprising a novel drive system. This robot facilitates locomotion assistive operation in narrow spaces, in which common wheelchairs cannot move easily. The Ball-Chair has two main features: its structural feature and driving mechanism. The exoskeleton frames of the Ball-Chair have been designed with octagonal shapes resembling a circle, for minimizing its volume and weight. Additionally, all its driving parts (including the ball) are mounted within of the robot to enhance its safety. The Ball-Chair features a reverse ball-mouse driving mechanism comprising two driving omni-wheels in the x- and y-axes. By controlling the speed of each omni-wheel, a holonomic driving system that can facilitate omnidirectional locomotion has been achieved using only two wheels. The effective movement of the Ball-Chair in any direction within narrow indoor spaces was experimentally verified. The paper outlines the development procedure in detail.

Balancing and Driving Control of a Mecanum Wheel Ball Robot (메카넘 바퀴 볼 로봇의 자세제어 및 주행)

  • Hwang, Seung-Ik;Ha, Hwi-Myung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.336-341
    • /
    • 2015
  • This paper proposes a balancing and driving control system for a Mecanum wheel ball robot which has a two axis structure and four motors. The inverted pendulum control method is adopted to maintain the balance of the ball robot while it is driving. For the balancing control, an anon-model-based controller has been designed to control the device simply without the need of a complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. For the driving control, the PID control algorithm has been adopted with angles of the wheels and the encoder data. The performance of the designed control system has been verified through the real experiments with the suggested ball robot.

Design and Control of Ball Robot capable of Driving Control by Wireless Communication (무선통신을 이용한 주행 제어가 가능한 볼 로봇의 설계 및 제어)

  • Lee, Seung-Yeol;Jeong, Myeong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1236-1242
    • /
    • 2019
  • Recently, according to improvement of robot technology, research for mobile robot is increasing. Mobile robot having 2-wheels or 4-wheels is easy for straight driving but is difficult for direction change and rotation. So, ball robot having one contact point with base is interested by researchers. By characteristics of the one contact, ball robot is required the balancing and driving control. In this paper, smart phone application, which is usable for control by wireless communication, is proposed. The ball robot having the proposed smart phone application is designed and manufactured. Balancing and driving control by wireless communication is conducted. From the test, it is conformed that ball robot has the control performances as roll angle error is ±0.8deg, pitch angle error is ±0.7deg, x-axis position error is ±0.1m, and y-axis position error is ±0.08m for 1m driving control.

Driving of the Ball Screw Actuator Using a Global Sliding Mode Control with Bounded Inputs

  • Choi Hyeung-Sik;Son Joung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.758-768
    • /
    • 2005
  • The ball screw actuated by the electric motor is widely used as an essential actuator for driving the mechanical system by virtue of accuracy and force transmission capability. In this paper, a design of the global sliding mode control is presented to drive the ball screw actuator along the minimum time trajectory, In the proposed control scheme, if the ranges of parametric uncertainties and torque limits of the system are specified, the arrival time of the load along the minimum time trajectory can be estimated. Also, the arriving time at the reference input and the maximum acceleration are expressed in a closed form solution. Conversely, the capacity of a ball screw actuator including the motor can be easily designed if the external load and its transportation time are specified. The superior performance of the proposed control scheme and analysis is validated by the computer simulation and experiments comparing with other sliding mode controllers.

Influence of Rolling Friction in Linear Ball Guideways on Positioning Accuracy

  • Tanaka, Toshiharu;Ikeda, Kyohei;Otsuka, Jiro;Masuda, Ikuro;Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.85-89
    • /
    • 2007
  • Linear ball guideways have been used recently in precision or ultra-precision positioning devices. However, when the inner balls begin to roll or the moving direction reverses, these guideways are subject to rolling friction or nonlinear spring behavior. An ultra-precision device with a linear motor, referred to as a 'tunnel actuator' (TA), has been constructed to measure these phenomena. The application of a TA is beneficial for two reasons: it mostly cancels the attractive magnetic force between the stator and mover (armature), and its magnetic flux leakage is very low. The influence of the nonlinear spring behavior in ball guideways was investigated in this study using the pure driving force from a TA. The equilibrium between the driving force from the TA and the nonlinear spring force provided great accuracy for a positioning stage using a linear ball guideway.

A Study of Compensatio of Thermal Displacement of the Ball Screw in CNC Lathe (CNC 선반에서 BALL ACREW의 열변위 보정에 관한 연구)

  • 홍성오;김병철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.181-186
    • /
    • 1993
  • Thermal expansion of ball screw in the semi-closed loop type CNC LATHE introduces positioning errors directly along the travelling the axis. In this paper the thermal displacements of the ball screw were estimated by using macro variable. The estimated displacements of the ball screw were given to the ball screw of the CNC LATHE under the constant driving conditions were measured to examine the effectiveness of the compensation method. The results showed that thermal displacements of the ball screw could be maintained less then 6 .mu.m positioning accaracy while using this compensation.

  • PDF

Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel (메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어)

  • Park, Young Sik;Kim, Su Jeong;Byun, Soo Kyung;Lee, Jang Myung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.