• 제목/요약/키워드: balancing motion

검색결과 106건 처리시간 0.028초

자동볼평형장치의 동적거동에 미치는 중력과 속도파형의 영향 (Effects of Gravity and Angular Velocity Profiles on the Dynamic Behavior of an Automatic Ball Balancer)

  • 정두한;정진태
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.511-516
    • /
    • 2004
  • The dynamic behavior of an automatic ball balancer (ABB) is studied considering the effects of gravity and angular velocity profiles. In this study, a physical model for an ABB installed on the Jeffcott rotor is adopted in order to investigate the effects of gravity and angular acceleration. The equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-o method. From the computed responses, the effects of gravity and angular velocity profiles on the dynamic behavior are investigated. It is found that the balancing of the rotor with ABB can be achieved regardless of gravity. It Is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

빙축열조 내부의 열적유동 특성 해석 (Analysis of Thermal and Flow Characteristic in Ice Storage Tank)

  • 김영인;홍희기;배철호;김영일;윤호식
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.369-376
    • /
    • 1988
  • Among several methods to solve the unbalanced electric power load, the Ice Storage System (ISS) for the air conditioning is relatively easy to realize and gives big effect on balancing the electric power load. The goals of this study are to develop the practical ISS for the air conditioning through the design, manufacturing and performance test of the experimental ISS (size $0.335m^3$, cold storage capacity 14200 kcal, IPF 0.4). Thermal fluid motion inside the ice storage tank during cooling storage and cooling release are studied. The data are analyzed by the dispersion analysis and optimal design conditions are derived from the result.

  • PDF

The 29 May 2004 Offshore Southeast Coast of Korea Earthquake Sequence: Shallow Earthquakes in the Ulleung Back-arc basin, East Sea (Sea of Japan)

  • ;노명현
    • 지구물리
    • /
    • 제9권3호
    • /
    • pp.249-262
    • /
    • 2006
  • The 29 May 2004 offshore Uljin, Korea earthquake was predominantly thrust-faulting at a depth of approximately 12 (±2) km. The mainshock attained the seismic moment of M0 =5.41 (±1.87)  1016 N m (Mw = 5.1). The focal mechanism indicates a subhorizontal P-axis trending 264° and plunging 2°. The orientation of P- and T-axis is consistent with the direction of absolute plate motion generally observed within the plates, hence the cause of the May 29 shock is the broad-scale stress pattern from the forces acting on the downgoing slab along the Japan trench and inhibiting forces balancing it. The 29 May 2004 earthquake occurred along a deep seated (~12 km), pre-existing feature that is expressed on the surface as the basement escarpment along the western and southern slopes of the Ulleung basin. The concentrated seismicity along this basement escarpment suggests that this feature may qualify as a seismic zone - the Ulleung basement escarpment seismic zone (UBESZ).

  • PDF

Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system

  • Yang, Hun-Mu;Cha, Jung-Yul;Hong, Ki-Seok;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • 제46권2호
    • /
    • pp.96-106
    • /
    • 2016
  • Purpose: Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. Methods: Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects' skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system. Results: In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases. Conclusions: The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system.

유아의 동작 교육을 위한 실루엣 기반 동작 추정 (Silhouette-based Motion Estimation for Movement Education of Young Children)

  • 신영숙;김혜정;이정욱;이경미
    • 한국콘텐츠학회논문지
    • /
    • 제8권4호
    • /
    • pp.273-284
    • /
    • 2008
  • 동작은 유아의 신체적, 사회적, 인지적 발달에 매우 중요한 요소이다. 본 논문에서는 유아의 신체에 적절한 동작 추정 방법을 제안한다. 본 논문에서는 동작교육에 필요한 동작 중에서 걷기, 뛰기, 앙감질의 이동동작과 구부리기, 뻗기, 균형잡기, 회전하기의 비이동 동작을 대상으로 한다. 제안된 시스템은 두 대의 카메라에서 획득된 프레임에서 조명 보정, 배경 제거, 모폴로지 실행 등의 과정을 통해 실루엣을 추출한다. 실루엣 특징으로 면적, 가로세로 비율, 발의 위치, 7개의 Hu moments를 사용한다. 또한 지역 특징으로 실루엣을 $5{\times}3$으로 나누어 각 영역의 면적과 움직임을 사용한다. 동작 추정을 위해서, 추출된 특징에 확률 전파를 적용하였다. 본 논문에서 제안된 알고리즘은 마커없이 유아들의 기본 동작을 추정함으로써 동작교육을 위한 가상 학습공간에서 실감형 인터페이스로 사용될 수 있는 가능성을 보여주고 있다.

무게중심위치와 슬라이딩 모드 제어를 통한 이륜형 모바일 머니퓰레이터의 자세제어 (Attitude Control of A Two-wheeled Mobile Manipulator by Using the Location of the Center of Gravity and Sliding Mode Controller)

  • 김민규;우창준;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.758-765
    • /
    • 2015
  • This paper proposes an attitude control system to keep the balance for a two-wheeled mobile manipulator which consists of a mobile platform and a three D.O.F. manipulator. In the conventional control scheme, complicated dynamics of the manipulator need to be derived for balancing control of a mobile manipulator. The method proposed in this paper, however, three links are considered as one body of mass and the dynamics are derived easily by using an inverted pendulum model. One of the best advantage of a sliding mode controller is low sensitivity to plant parameter variations and disturbances, which eliminates the necessity of exact modeling to control the system. Therefore the sliding mode control algorithm has been adopted in this research for the attitude control of mobile platform along the pitch axis. The center of gravity for the whole mobile manipulator is changing depending on the motion of the manipulator. And the orientation variation of center of gravity is used as reference input for the sliding mode controller of the pitch axis to maintain the center of gravity in the middle of robot to keep the balance for the robot. To confirm the performance of controller, MATLAB Simulink has been used and the resulting algorithms are applied to a real robot to demonstrate the superiority of the proposed attitude control.

키네시오 테이프의 장력 차이가 젊은 대학생들의 발목 근력, 관절가동범위 및 균형에 미치는 영향 (Effect of tension difference of kinesio tape applied to the tibialis anterior muscle on muscle strength, joint range of motion, and balance of the ankle joint in young college students)

  • 이대훈;김초인;신기하;염유진;김지성;김성호
    • 대한물리치료과학회지
    • /
    • 제29권2호
    • /
    • pp.28-37
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effects of differences in the tension of Kinesio tape applied to the tibialis anterior muscle on muscle strength, joint range of motion and balance of ankle joint in young adults. Design: Randomized Controlled Trial. Methods: 41 young college students participated in this study. And the subjects were allocated randomly to two group. The experimental group had a tension difference (10%G, n=20). And there was no difference in tension in the control group (0%G, n=21). Jtech power track II, goniometer, and Biorescue were used to measure muscle strength, joint range of motion and balance. The paired t-test was performed to examine the differences within the groups before and after taping, and the independent t-test was performed to examine the differences between the groups. Result: 1) As a result of measuring muscle strength of each group, all measurements except 0%G of plantar flexion showed insignificant results. 2) Measurement of joint range of motion each group showed that neither 0%G nor 10%G was significant. 3) As a result of measuring the baladncing ability of each group there was a significant decrease in length, and average speed of the balancing capability (p<.05). 4) Comparisons between groups showed significant differences in the area among balance capability (p<.05). Conclusions: Based on these findings, the tension difference of Kinesio tape applied to the tibialis anterior muscle shows little effect on the muscle strength, range of motion, and balance of ankle joints. Given the current lack of research on the tension of kinesio tapes many studies are needed in the future to establish clear theories.

외바퀴 로봇의 동적 속도 제어 (Dynamic Speed Control of a Unicycle Robot)

  • 한인우;황종명;한성익;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

소형 휴머노이드 로봇 시스템 개발 (The Development of a Miniature Humanoid Robot System)

  • 성영휘;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.420-426
    • /
    • 2001
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on an even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes: One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot\`s gait motion. In our walking algorithm, the ankle joint is mainly used for balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on an even surface.

  • PDF