• 제목/요약/키워드: balancing motion

검색결과 106건 처리시간 0.031초

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.

바람의 힘을 이용한 외바퀴 이동 로봇의 구현 및 균형제어 (Implementation and Balancing Control of A Single-wheel Mobile Robot Using Air Power)

  • 심용기;정슬
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.139-144
    • /
    • 2014
  • This paper presents the novel design, implementation and control of a single-wheel mobile robot that can balance by using air power from ducted fans. All of the motions of the single-wheel mobile robot are actuated by air power instead of motor torques. Using air power allows to reduce the total weight of the robot. The complementary sensor fusion algorithm is introduced to estimate the angle correctly. After several design and development, the robot is tested for balancing in the roll direction and yawing motion. In addition, the balancing control of the robot on a single rope is tested to evaluate the control performance.

역진자형 전동 스쿠터의 조향 시스템 (Steering System in a Self-Balancing Electric Scooter)

  • 최용준;류정래;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.942-949
    • /
    • 2014
  • In this paper, a new steering system for a self-balancing electric scooter is proposed with an intuitive steering command input method, where the steering command is generated from the rider's motion of shifting body to move the center of gravity toward the rotational direction. For the purpose, weight distributions on the rider's feet are measured using force sensors placed beneath the rider's feet, and the difference is applied to a steering control system. Stability of the steering system and resultant radius of gyration is investigated by modeling the steering system in consideration of the rider's motion and centrifugal force. The proposed steering system is applied to experiments, and the results are presented to prove the validity of the proposed method.

운동관절 데이터베이스를 이용한 3차원 인체모형의 동작제어 (Motion Control of 3D Human Character Using Motion Database)

  • 김시중;국태용
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.262-267
    • /
    • 1998
  • A hierarchical motion control system for animation of 3D human character is implemented using the motion database in realtime. The proposed motion control system consists of coordination controller for gait timing and balancing of walking motion, joint servo controller for realistic limb movement, and motion database for goal-directed character animation which makes time-consuming animation relatively easy task. As one example among the various applications of the proposed motion control system. We present a simple virtual reality system in which the motion control system plays a central role in generating realistic motion of virtual human character.

  • PDF

외란 추정기를 이용한 펜듀봇 시스템의 사인파형 외란 보상 (Compensation of Sinusoidal Disturbance in Pendubot System using Disturbance Observer)

  • 전정효;김철중;좌동경
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2278-2283
    • /
    • 2010
  • This paper deals with the pendubot control using disturbance observer. Experimental results for the motion of pendubot with balancing control show that the limit cycle can be attributed to the disturbance. Therefore, we propose the disturbance compensation method using by disturbance observer to compensate for the disturbance. Through the experimental results, the effectiveness of the proposed method is verified.

이족보행로봇의 보행을 위한 에너지 최적화 (Energy Optimization for The Walking of Biped Robot)

  • 김종태;최상호;임선호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2339-2341
    • /
    • 1998
  • This paper is concerned with an energy optimization for the walking of IWR biped robot. The movement of balancing joints are determined by ZMP(Zero Moment Point) and dynamic properties caused by motion of a swing leg. Therefore, ZMP positions have an important role in walking and guarnateeing the stability of a robot. A genetic algorithm is utilized for solving this problem and finding ZMP with a minimum energy at each sampling time during the walk. In this study, we performed an energy optimization with desired ZMP trajectories and motion of balancing joints.

  • PDF

이족 보행 로봇의 인간과 유사한 지속보행을 위한 걸음새 구현 (Gait Implementation of Biped Robot for a continuous human-like walking)

  • 진광호;구자혁;장충렬;최상호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3092-3094
    • /
    • 1999
  • This paper deals with the gait generation of Biped Walking Robot (IWR-III) to have a continuous walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. The trunk moves continuously for all walking time and moves toward Z-axis. Balancing motion is acquired by FDM(Finite Difference Method) during the walking. By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis and system stability is confirmed. Walking motion is visualized by 3D-Graphic simulator. As a result, the motion of balancing joints can be reduced by the trunk ahead effect during kick action, and impactless smooth walking is implemented by the experiment.

  • PDF

링크모션 펀치프레스의 다이나믹 발란싱 (Dynamic Balancing in a Link Motion Punch Press)

  • 서진성
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.415-426
    • /
    • 2007
  • 링크모션 펀치프레스는 많은 링크들이 서로 연결되어 있으며 각각의 링크는 고속에서 구속 운동을 수행한다. 그 결과 동적 불평형 힘과 모멘트가 프레스의 메인프레임으로 전달되며 원하지 않는 진동을 수반한다. 이로 인하여 생산성과 정확한 스탬핑 작업의 저하를 초래한다. 이 논문은 기구학 및 동역학 분석에 기초하여 링크모션 펀치프레스의 다이나믹 언발란스를 저감하는 효과적인 방법을 제시한다. 그리고 디자인 변화가 필요할 때마다 메커니즘의 모델 구성을 자동화하기 위한 디자인 변수 방식을 소개한다. 질량, 질량관성모멘트, 질량중심 등의 링크들의 관성 성질을 얻기 위하여 3차원 캐드 소프트웨어를 활용하였다. 메커니즘의 기구학적, 동역학적 거동에 주요한 영향을 미치는 일부 링크들의 디자인을 변화시킬 때 얻을 수 있는 다양한 조합에 대하여 동역학 시뮬레이션을 수행하였다.

사각 보행 로보트의 제작 및 균형추를 이용한 안정성 향상에 관한 연구 (A Development of 4-legged Walking Machine and the Enhancement of Static Stability Margin Using Balancing Weight)

  • 강신천;오준호;정경민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.146-154
    • /
    • 1991
  • As the application of robotic systems expand its scope, more research efforts are given in providing mobility to the robotic systems so that they can travel across various paths including those with formidable obstacles such as stairways or rough terrains. Legged locomotion is mainly concerned because the walking motion, like that of animal behavior, has many advantages over wheel type or track type locomotion especially in rough terrain. Walking robot, in general, having a discrete number of legs, have inherently low static stability. Static stability can be increased to a certain degree, by improving walking method, but it has many limitations such as reduced travel speed. A very promising possibility lies in the use of balancing weight, nevertheless its actual implementation is very rare. In this study, a 4-legged walking machine is developed and the static stability margin is increased with the balancing weight. In the future, this robot will be used to take an experiment on the walking in mush terrain.

  • PDF

자동볼평형장치의 밸런싱 성능에 대한 중력과 속도파형의 영향 (Gravity and Angular Velocity Profile Effects on the Balancing Performance of an Automatic Ball Balancer)

  • 정진태;정두한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.418-423
    • /
    • 2003
  • The balancing performance of an automatic ball balancer (ABB) in the vertical or horizontal position is studied in this paper. Considering the effects of gravity and angular velocity profiles, a physical model for an ABB installed on the Jeffcott rotor is adopted. The non-linear equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-u method. From the computed responses, the effects of gravity and angular velocity profiles on the balancing performance are investigated. It is found that the rotor with ABB can be balanced regardless of the gravity effect. It is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

  • PDF