• Title/Summary/Keyword: balanced transverse smoke exhaust system

Search Result 2, Processing Time 0.024 seconds

A Study on the Effective Smoke Exhaust Amount of Load-Tunnel with Semi-Transverse Ventilation - Balanced Exhaust Case - (도로터널 반횡류식 환기방식의 최적배연 풍량산정에 관한 연구 - 균일배기의 경우 -)

  • Rie, Dong-Ho;Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.46-51
    • /
    • 2006
  • The smoke exhaust system is one of the effective systems to save lives when fire occurs underground. This study presents a complete analysis of effective smoke exhaust and smoke characteristics for a fire occurring with a transverse ventilation system use as a smoke exhaust system. The performance of the smoke management system was studied by computer modeling using FDS version 3.1. A fire size of 20MW was used for tunnel with balanced exhaust transverse ventilation. The smoke management design and the procedure as simulated in this study are also compliant to the tunnel construction and fire codes of Korea.

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).