• Title/Summary/Keyword: baffle

Search Result 498, Processing Time 0.023 seconds

Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND) (동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성)

  • Tian, Dong-Jie;Lim, Hyun-Suk;An, Chan-Hyun;Lee, Bong-Gyu;Jun, Hang-Bae;Park, Chan-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.724-729
    • /
    • 2013
  • Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0, 1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and $NH_4^+$-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.

Investigation about the Decrease Efficiency of Thermal Discharge Temperature at Mixing Basin of Power Plant using 3-D CFD (3차원 수치모의에 의한 발전소 배수로 혼합지에서의 온배수 수온저감 효과에 대한 고찰)

  • Park, Byong-Jun;Lee, Sang-Hwa;Park, Ji-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.593-593
    • /
    • 2012
  • 본 연구는 화력 및 원자력 발전소로 취입된 냉각수(circulating and essential service water)가 복수기로부터 온배수 형태의 개수로 흐름으로 표층배수 될 경우 수온을 저감시키기 위해 주입하는 희석수(by-pass cooling water)와의 혼합효과의 효율성을 증대시키고, 불리한 수리현상을 야기하지 않으며, 경제적인 배수로 구조물을 고찰하기 위한 목적으로 시도되었다. 배수로 구조물 내 온배수와 희석수가 혼합되는 구간을 혼합지(mixing basin)라 하는데, 본 과업에서는 ${\bigcirc}{\bigcirc}$발전소의 배수로 구간 중 혼합지를 대상으로 FLOW-3D$^{(R)}$를 이용한 3차원 수치모형을 구축하고, 총 9개에 해당하는 각 대안별 현상을 분석하고 비교하였다. 각 대안들의 차이점은 배수로에 설치되는 보조구조물들의 형상과 배열 등이며, 복수기로부터 나오는 배출수의 수온은 $42^{\circ}C$, 희석수는 $35^{\circ}C$이고, 본 과업의 주요 관심대상 물리량은 유속과 온도이다. 배수로에 아무런 보조 구조물이 없는 형태인 기본 계획안을 검토한 결과, 평균 $3.31^{\circ}C$의 수온강하가 이루어졌으나, 우안 쪽으로 강한 흐름이 발생하여 수온의 좌우편차가 $4.61^{\circ}C$ 가량 발생하는 것으로 나타났다. 기본 계획안의 검토결과를 보완하기 위한 대안으로 연직 흐름의 소산을 위해 고안된 잠형 소파블록(baffle block) 설치안은 평균 $3.06^{\circ}C$의 수온강하가 이루어지고 $4.44^{\circ}C$의 수온 좌우편차가 발생했다. 지그재그(zigzag) 형태의 흐름을 만들어 혼합효과를 올리기 위한 미로형 수제(labyrinth groin) 설치안은 평균 $5.33^{\circ}C$의 수온강하가 이루어지고, $1.43^{\circ}C$의 수온 좌우편차를 보여줘 검토했던 대안들 중 가장 좋은 결과를 보여주었다. V자 배열 소파블럭(deformed block) 설치안은 연직 및 수평방향의 소산을 기대했으나 평균 $3.00^{\circ}C$의 수온 강하와 $4.41^{\circ}C$의 수온 좌우편차를 나타냈다. 벤츄리(Venturi) 형태의 흐름을 발생시키기 위한 병목형(bottleneck) 수로안은 평균 $3.18^{\circ}C$의 수온강하와 $3.94^{\circ}C$의 수온 좌우편차, 흐름의 소산과 흐름방향을 변화시키기 위한 와형 수제(swirl groin) 설치안은 평균 $2.24^{\circ}C$의 수온강하와 $1.48^{\circ}C$의 수온좌우편차, 우안 흐름을 지연시키기 위한 물방석(water cushion) 수로안은 평균 $3.03^{\circ}C$의 수온강하와 $4.50^{\circ}C$의 수온 좌우편차, 우안의 흐름을 좌안으로 보내기 위한 분사형(injector) 수로안은 평균 $3.13^{\circ}C$의 수온강하와 $4.45^{\circ}C$의 수온 좌우편차, 우안의 흐름을 막기 위한 외팔형 수제(cantilever groin) 설치안은 평균 $3.11^{\circ}C$의 수온강하와 $3.02^{\circ}C$의 수온 좌우편차가 발생하는 것으로 나타났다.

  • PDF

Optimum Geometry of Glass Lined HOMEBASE Impeller for Gas-Liquid System of Low Viscosity Liquid (저점도 액 통기 교반용 글라스라이닝 홈베이스 임펠러의 최적 형상)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.542-547
    • /
    • 2021
  • Glass lined impellers are corrosion resistant to most chemicals, including strong acids, and also have a smooth, non-stick surface, easy to clean and free from impurities in the process. Glass lined home base impeller is a multi-purpose impeller designed to stir a wide viscosity range of liquids from low viscosity fluids to high viscosity fluids, among others, cell culture, yeast culture, and beer fermentation pots, especially used for air-water system breathable stirring. The glass lining for HB impellers, which are simple in structure and competitive in performance, is essential to have upper and lower division in order to make the joint area between the impeller and shaft as small as possible. The upper and lower division of the impeller hardly affects the mixing performance, but the aeration performance. In this study, in order to optimize the shape of the Glass Lining HB impeller, a study was conducted on the effect of the angle between the upper and lower impellers, the clearance between the impellers, and the number of baffles on the aeration power. The optimal shape and baffle plate conditions for the Glass lined HB impeller were derived through the study results that the angle and the clearance between the upper and lower impellers decreased the ration of the power consumption with aeration Pg and that without aeration P0, Pg/P0.

Conversion of Total Atrio-pulmonary Connection to Total Cavo-pulmonary Connection - Review of Indications and Hemodynamic Characteristics - (심방-폐동맥 문합술 후 총 체정맥-폐동맥 문합술로의 전환 - 수술 적응증 및 혈역학적 특징의 검토 -)

  • Seo, Jung Ho;Lee, Jong Kyun;Choi, Jae Young;Sul, Jun Hee;Lee, Sung Kyu;Park, Young Whan;Cho, Bum Koo
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.2
    • /
    • pp.199-207
    • /
    • 2002
  • Purpose : Since the successful application of total atrio-pulmonary connection(TAPC) to patients with various types of physiologic single ventricles in 1971, post-operative survival rates have reached more than 90%. However some patients have been shown to present with late complications such as right atrial thrombosis, atrial fibrillation and protein losing enteropathy eventually leading to re-operation to control the long-term complications. The aim of this study is to review the results of total cavo-pulmonary connection(TCPC) in cases with late complications after TAPC. Methods : Between Jan. 1995 and Dec. 2000, 6 patients(5 males and 1 female) underwent cardiac catheterization $11{\pm}3$ months after conversion of previous TAPC to TCPC. We compared the hemodynamic and morphologic parameters before and after TCPC and also assessed the clinical outcomes. The indications for TAPC were tricuspid atresia in 4 cases and complex double-outlet right ventricle with single ventricle physiology in 2 cases. Results : There was no peri-operative mortality and all patients were clinically and hemodynamically improved at a mean follow-up of 11 months(range : 4 to 13). However, protein losing enteropathy recurred in 2 patients; this was were successfully treated with subcutaneous administration of heparin. Right atrial pressure before TCPC was $18.0{\pm}3.6mmHg$, but baffle pressure, corresponding to right atrial pressure decreased to $14.8{\pm}3.6mmHg$ after TCPC. The size of the pulmonary arteries did not regress after TCPC. Conclusion : The conversion of TAPC to TCPC improves clinical and hemodynamic status by decreasing the right atrial pressure and by providing a laminar cavo-pulmonary flow which enhances the effective pulmonary circulation in the so-called Fontan circulation.

Arthroscopic Retrieval Analysis for Intra-articular Foreign Body of the Knee Joint (슬관절내 이물질에 대한 관절경적 제거술식의 분석)

  • Lee, Byung-Ill;Choi, Hyung-Suk;Jo, Joo-Hyoung;Kwon, Sai-Won
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.3
    • /
    • pp.211-216
    • /
    • 2008
  • Purpose: The frequency of foreign body in the knee joint is not as high, but it sometimes required wide or multiple arthrotomy in order to remove, which can baffle the surgeon in some ways. Our study is to evaluate for effectiveness of arthroscopic retrieval for intra-articular foreign body in the knee joint. Materials and Methods: The 22 patients(16 males, 6 females) had received arthroscopic foreign body retrieval in the knee joint from March 1983 to September 2006. The causes of foreign bodies of the knee joint were 7 of trauma (31.9%) related cases, 13 of surgery related cases (59.0%), 2 found during follow up after operation (8.1%) in pathologies of foreign body. Results: There were 15 of metal showed the most percentage (68.1%), 7 of non-metal (31.9%) in types of foreign bodies, and others included bullet, suture material, pencil lead, broken wire etc. All cases were used by arthroscopic techniques. All foreign bodies were removed easily and were showed no complication such as postoperative joint stiffness. Conclusion: Arthroscopic foreign body retrieval in the knee joint is effective surgery in terms of easy access to foreign body and less postoperative complication.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF