• Title/Summary/Keyword: bacteriostatic

Search Result 100, Processing Time 0.032 seconds

Synthesis and Biological Activities of Carbamate Derivative (Carbamate 화합물의 합성 및 위생학적 연구)

  • 강회양
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.19-24
    • /
    • 1996
  • Carbamates are generally used as insecticide, thus 5.7-dichloro-8~hydroxyquinolinyl- N-ethylcarbamate was newly synthesized. Its physical properties were determined and chemical structure was identified by means of I.R., nmr in addition to elemental analysis. The yield of addition, using triethylamine as catalyst, 5.7-dichloro-8-hydroxyquinoline and isocyanate was better than that of condensation of 5.7-dichloro-8-hydroxyquinoline with carbamoylchloride. The effct of the compound on rabbit's ileum, and antibacterial activity against Staphylococcus aureus, Salmonella typhi, Echerichia coli, and Pseudomonas aeruginosa were examined. The present organic synthesized compound showed the bacteriostatic action on salmonella typhi, escherichia coli, and pseudomonas aeruginosa, but no otherwise effect of contraction of rabbit's ileum in the concentration of $250 \mu g/ml$.

  • PDF

Heat Stability of the Antimicrobial Activity of Selected Plant Extracts against Aeromonas hydrophila

  • Xu, Hua;Mustapha, Azlin;Ahn, Ju-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • Antimicrobial stability of grape seed extract ($ActiVin^{TM}$), pine bark extract ($Pycnogenol^{(R)}$), and oleoresin rosemary ($Herbalox^{(R)}$) on the growth of Aeromonas hydrophila was investigated in cooked ground beef. When compared to the control, the populations of A. hydrophila were most effectively reduced by 4.06 log CFU/g for 1% $Pycnogenol^{(R)}$ added after cooking at 10 days of refrigerated storage, followed by 3.06 log CFU/g for 1% $Pycnogenol^{(R)}$ added before cooking and 1.36 log CFU/g for $ActiVin^{TM}$. Bacteriostatic and bactericidal activities were observed for $Pycnogenol^{(R)}$ added before and after cooking, respectively. $Pycnogenol^{(R)}$ consists of heat-labile and heat-stable compounds. $ActiVin^{TM}$ and $Pycnogenol^{(R)}$ could be considered for use as multifunctional preservatives in meat and meat products.

Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold

  • Doty, Heather A.;Courtney, Harry S.;Jennings, Jessica A.;Haggard, Warren O.;Bumgardner, Joel D.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.159-172
    • /
    • 2015
  • Treatment of polymicrobial infected musculoskeletal defects continues to be a challenge in orthopaedics. This research investigated single and dual-delivery of two antibiotics, vancomycin and amikacin, targeting different classes of microorganism from a biodegradable calcium sulfate-chitosan-nHA microsphere composite scaffold. The addition of chitosan-nHA was included to provide additional structure for cellular attachment and as a secondary drug-loading device. All scaffolds exhibited an initial burst of antibiotics, but groups containing chitosan reduced the burst for amikacin at 1hr by 50%, and vancomycin by 14-25% over the first 2 days. Extended elution was present in groups containing chitosan; amikacin was above MIC ($2-4{\mu}g/mL$, Pseudomonas aeruginosa) for 7-42 days and vancomycin was above MIC ($0.5-1{\mu}g/mL$ Staphylococcus aureus) for 42 days. The antibiotic activity of the eluates was tested against S. aureus and P. aeruginosa. The elution from the dual-loaded scaffold was most effective against S. aureus (bacteriostatic 34 days and bactericidal 27 days), compared to vancomycin-loaded scaffolds (bacteriostatic and bactericidal 14 days). The dual- and amikacin-loaded scaffolds were effective against P. aeruginosa, but eluates exhibited very short antibacterial properties; only 24 hours bacteriostatic and 1-5 hours bactericidal activity. For all groups, vancomycin recovery was near 100% whereas the amikacin recovery was 41%. In conclusion, in the presence of chitosan-nHA microspheres, the dual-antibiotic loaded scaffold was able to sustain an extended vancomycin elution longer than individually loaded scaffolds. The composite scaffold shows promise as a dual-drug delivery system for infected orthopaedic wounds and overcomes some deficits of other dual-delivery systems by extending the antibiotic release.

Physicochemical, Antibacterial Properties, and Compatibility of ZnO-NP/Chitosan/β-Glycerophosphate Composite Hydrogels

  • Huang, Pingping;Su, Wen;Han, Rui;Lin, Hao;Yang, Jing;Xu, Libin;Ma, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.522-530
    • /
    • 2022
  • In this study we aimed to develop novel ZnO-NP/chitosan/β-glycerophosphate (ZnO-NP/CS/β-GP) antibacterial hydrogels for biomedical applications. According to the mass fraction ratio of ZnO-NPs to chitosan, mixtures of 1, 3, and 5% ZnO-NPs/CS/β-GP were prepared. Using the test-tube inversion method, scanning electron microscopy and Fourier-transform infrared spectroscopy, the influence of ZnO-NPs on gelation time, chemical composition, and cross-sectional microstructures were evaluated. Adding ZnO-NPs significantly improved the hydrogel's antibacterial activity as determined by bacteriostatic zone and colony counting. The hydrogel's bacteriostatic mechanism was investigated using live/dead fluorescent staining and scanning electron microscopy. In addition, crystal violet staining and MTT assay demonstrated that ZnO-NPs/CS/β-GP exhibited good antibacterial activity in inhibiting the formation of biofilms and eradicating existing biofilms. CCK-8 and live/dead cell staining methods revealed that the cell viability of gingival fibroblasts (L929) cocultured with hydrogel in each group was above 90% after 24, 48, and 72 h. These results suggest that ZnO-NPs improve the temperature sensitivity and bacteriostatic performance of chitosan/β-glycerophosphate (CS/β-GP), which could be injected into the periodontal pocket in solution form and quickly transformed into hydrogel adhesion on the gingiva, allowing for a straightforward and convenient procedure. In conclusion, ZnO-NP/CS/β-GP thermosensitive hydrogels could be expected to be utilized as adjuvant drugs for clinical prevention and treatment of peri-implant inflammation.

An Unusually Stable S-Nitrosothiol from Glutathione

  • Park, Jeen-Woo;Means, Gary-E.
    • Archives of Pharmacal Research
    • /
    • v.12 no.4
    • /
    • pp.257-258
    • /
    • 1989
  • Glutathione was converted by $HNO_2$ into a S-nitrosothiol which was stable in solution and atypically so even as a solid. FAB/MS and IR data have been obtained for the confirmation of structure of S-nitrosogulathione in the crystalline state.

  • PDF

Screening of Lactobacilli Derived from Fermented Foods and Partial Characterization of Lactobacillus casei OSY-LB6A for Its Antibacterial Activity against Foodborne Pathogens

  • Chung, Hyun-Jung;Yousef, Ahmed E.
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.162-167
    • /
    • 2009
  • Various fermented foods were screened in search of food-grade bacteria that produce bacteriocins active against Gram-negative pathogens. An isolate from a mold-ripened cheese presented antibacterial activity against Gram-positive and Gram-negative bacteria. The most active isolate was identified as Lactobacillus casei by a biochemical method, ribotyping, and membrane lipid analysis, and was designated as OSY-LB6A. The cell extracts of the isolate showed inhibition against Escherichia coli p220, E. coli O157, Salmonella enerica serovar Enteritidis, Salmonella Typhimurium, and Listeria monocytogenes. The antibacterial nature of the cell extract from the isolate was confirmed by eliminating the inhibitory effects of acid, hydrogen peroxide, and lytic bacteriophages. The culture supernatant and cell extract retained antibacterial activity after heating at $60{\sim}100^{\circ}C$ for $10{\sim}20$ min. The activity of the cell extract from Lb. casei was eliminated by pronase and lipase. Finally, the cell extract showed a bactericidal mode of action against E. coli in phosphate buffer solution, but it was bacteriostatic in broth medium and food extracts.

Deodorizing and Antibacterial Performance of Cotton, Silk, Wool Fabrics Dyed with Pomegranate (Punica granatum L.) Extracts

  • Lee, Young-Hee;Hwang, Eun-Kyung;Lee, Dong-Jin;Jung, Young-Jin;Kim, Han-Do
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.55-55
    • /
    • 2012
  • To improve the deodorizing and antibacterial performance of various fabrics (cotton, silk and wool) dyed with pomegranate(Punica granatum L.) extract without mordants, natural colorant solutions, which were extracted from pomegranate using water as an extractant at $90^{\circ}C$ for 90 min with a various liquor ratio (solid natural colorant material/solvent water, weight ratio) from 1:100 to 1:5 were used. To achieve the highest K/S and the deodorizing and antibacterial performance, the best liquor ratio, dyeing bath ratio, dyeing temperature and dyeing time were found to be 1:10, 1:50, $80^{\circ}C$ and 60 min, respectively. The deodorizing performance of dyed cotton, silk and wool fabrics against acetic acid vapor were found to be95,70,90%,respectively. However, all the dyed fabrics displayed outstanding deodorizing performance(99%) against ammonia gas and antibacterial performance(bacteriostatic reduction rate:99.9%) against Staphylococcu aureus and Klebsiella pneumonia(bacteriostatic reduction rate: 99.9%). It is worth noting that pomegranate (Punica granatum L.) colorants notably enhanced the deodorizing and antibacterial performance of cotton, silk and wool fabrics.

  • PDF

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

Deposition for PET Fabric of Macban Stone with RF Sputtering (RF Sputtering을 이용한 맥반석의 PET 직물에의 증착)

  • Lee, Hye-Ryeon;Choi, Soon-Hwa
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.129-133
    • /
    • 2006
  • To develope a high value-added fiber products which is useful in the human body physiology, the Macban stone was deposited on the PET fabric by sputtering and its effects were investigated. Then, a Macban stone target was prepared for sputtering treatment and treated on the PET fabric by RF sputtering process. After treatment, surface observation by SEM, far-infrared emissivity and emissive power, the fastness to washing and light, bacteriostatic rate, electrostatic, drape stiffness, and breaking strength of PET fabric were investigated. From these investigation, the following conclusions were obtained. 1) The Macban stone was able to deposit on the PET fabric, by the RF sputtering treatment which is eco-friendly dry textile finishing. 2) The far-infrared emissivity and emissive power of sputtered PET fabrics were increased. 3) When PET fabric was treated by sputtering with Macban stone, the amount of deposited Macban stone increased with increasing treatment time and it was deposited on the fabric surface firmly. 4) The bacteriostatic rate of sputtered PET fabrics was about 20%. 5) The electrostatic charge of fiber surface was reduced by sputtering. 6) The fastness washing to light of dyed fabric were improved by the deposition of Macban stone, but the breaking strength was not changed by sputtering. 7) The drape stiffness of sputtered PET fabrics increased with increasing treatment time.

In vitro Antimicrobial Combination Therapy in Metallo-β-lactamase Producing Pseudomonas aeruginosa (Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 시험관내 항균제 병합요법에 대한 연구)

  • Hong, Seung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.166-172
    • /
    • 2006
  • Metallo-${\beta}$-lactamase (MBL) can hydrolyze all ${\beta}$-lactams except monobactams and frequently coexists with various antibiotic resistance genes such as aminoglycoside resistance, sulfonamide resistance gene, etc. Therefore, the effective antibiotics against infections by these bacteria are markedly limited or can't even be found. We tried to search in-vitro antimicrobial combinations with synergistic effects for a VIM-2 type MBL producing Pseudomonas aeruginosa, isolated from clinical specimen. On the selection of antibiotic combinations with synergistic effects, we performed a one disk synergy test, modified Pestel's method, in agar without aztreonam (AZT). The bacteriostatic synergistic effects of this tests were scored as $S_1$ (by susceptibility pattern in agar without antibiotics), $S_2$ (by the change of susceptibility in agar with or without antibiotics) and $S_3$ ($S_1$ + $S_2$) and was classified into weak (1 point), moderate (2 points) and strong (3 points) by $S_3$ score. Subsequently, we carried out the time-killing curve for the antibiotic combinations with the strong synergistic bacteriostatic effect. One VIM-2 type MBL producing P. aeruginosa confirmed by the PCR showed all resistance against all ${\beta}$-lactams except AZT, aminoglycoside and ciprofloxacin. In the one disk synergy test, this isolate showed a strong bacteriostatic synergistic effect for the antibiotic combination of AZT and piperacillin-tazobactam (PIP-TZP) or AZT and amikacin (AN). On the time-killing curve after six hours of incubation, the colony forming units (CFUs/mL) of this bacteria in the medium broth with both combination antibiotics were decreased to 1/18.7, 1/17.1 of the least CFUs of each single antibiotics. The triple antibiotic combination therapy including AZT, PIP-TZP and AN was shown to be significantly synergistic after 8 hrs of exposure. In a VIM-2 MBL producing P. aeruginosa with susceptibility for AZT, the triple antibiotic combination therapy including AZT, PIP-TZP and AN may be considered as an alternative antibiotics modality against the infection by some MBL type. But the antimicrobial combination therapy for many more MBL producing isolates is essential to know as soon as possible for the selection of effective treatment against the infection by this bacteria.

  • PDF