• Title/Summary/Keyword: bacteriophage Lambda

Search Result 32, Processing Time 0.022 seconds

Studies on the receptor for bacteriophage N4 infection (Bacteriophage N4의 receptor에 대한 연구)

  • 채건상;김선정;김창수;유욱준
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.52-56
    • /
    • 1987
  • The evidences that Lam B protein of E. coli is used as a receptor for infections of bacteriophage N4 as well as bacteriophage lambda were obtained from the following experimental results. First, all of the isolated lambda resistant dlones possessing foreign DNA fragments in the plasmids were also resistant to bacteriophage N4, but not to bacteriophage $\phi$ 80, T4 and T7. Second, when the plasmid DNA was treated with various restriction enzymes and ligated to delete the total or a portion of the foreign DNA fragments, the deleted plasmids lost the resistant activities to lambda and N4, simultaneously. Third, after amplification of Lam B protein about 200 times by inducing the protein using maltose as a sole carbon source, the host E. coli became sensitive to both lambda and N4.

  • PDF

Implications of Exonuclease Activity of Bacteriophage P2 Old Protein for Lambda Exclusion

  • Kim, Kwang-Ho;Park, Chan-Hee;Yeo, Hyeon-Joo;Kee, Young-Hoon;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.272-274
    • /
    • 2000
  • Temperate bacteriophage P2 has a nonessential gene called old(overcoming lysoginization defection). In the presence of old, the growth of the host (Escherichia coli) with recBC- genotype is ingibited, and another bacteriophage, lambda, cannot superinfect. The Old protein has been shown to possess an exonuclease actibity. Three mutant P2s(old 1, old 17, old 49) which did gene was coned into expression vectors to produce hexahistidine-tagged proteins. The proteins were affinity-purified and shown to lose its exonuclease activity on both double-stranded and single-stranded DNA substrates. Thus, it was concluded that the lambda exclusion was related to Old's exonuclease activity.

  • PDF

An analysis of the arm-type site binding domain of bacteriophage .lambda. integrase

  • Cho, Eun-Hee
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • The 356 amino acid long lambda integrase protein of bacteriophage .lambda. constains two autonomous DNA binding domains with distinct sequence specificities. The amino terminal domain of integrase is implicated to bind to the arm-type sequences and the carboxyl domain interacts with the coretype sequencess. As a first step to understand the molecular mechanism of the integrase-DNA interaction at the arm-type site, the int(am)94 gene carrying an amber mutation at the 94th codon of the int was cloned under the control of the P$\_$tac/ promoter and the lacI$\_$q/ gene. The Int(am)94 mutant protein of amino terminal 93 amino acid residues can be produced at high level from a suppressor free strain harboring the plasmid pInt(am)94. The arm-type binding activity of Int(am)94 were measured in vivo and in vitro. A comparison of the arm-type binding properties of the wild-type integrase and the truncated Int(am)94 mutant indicated that the truncated fragment containing 93 amino acid residues carry all the determinants for DNA binding at the arm-type sites.

  • PDF

Expression and Purification of Bacteriophage Lambda Integrase by Fusion Protein System (단백질 융합 시스템을 이용한 Bacteriophage Lambda Integrase의 발현 및 정제)

  • 이나영;유승구
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.784-788
    • /
    • 1995
  • The lambda Integrase (Int) carries out site-specific recombination between the two partner DNA sequences, attachment P (attP) and attachment B (attB). In order to study the recombination mechanism, a large quantity of pure integrase is required. Then, we constructed an int gene inserted recombinant plasmid (pNYL3) by using the pQE31 HIS-Tag vector, and produced the fusion protein, 6xHIS-Int from the E. coli TG1 strain carrying the pNYL3 plasmid. The recombinant protein produced was purified by phosphocellulose and Ni$^{++}$-NTA affinity column chromatographies. The result of the in vitro recombination assay using the standard reaction mixture containing 6xHIS-Int and partially purified integration host factor (IHF) showed that the 6xHIS-Int tagged recombination Integrase had the full recombination activity.

  • PDF

Multiple Functions of the Amino-terminal Domain of Bacteriophage Lambda Integrase: A New Member of Three-stranded $\beta-sheet$ DNA-binding Proteins

  • Cho Eun Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.159-161
    • /
    • 2002
  • Bacteriophage lambda integrase carries out the site-specific recombination of lambda. Integrase contains two DNA binding domains with distinct sequence specificity, namely arm-type binding and core-type binding domains. The amino-terminal arm-binding domain is structurally related to the three-stranded $\beta-sheet$ family of DNA-binding domains. Integrase binding to the high affinity arm-type site by the amino-terminal domain facilitates Int binding to the low affinity core-type site, where the cleavage and strand exchange occurs. The amino-terminal domain of Int also modulates the core-binding and catalysis through intramolecular domain-domain interaction and/or intermolecular interactions between Int monomers. In addition, the amino-terminal domain interacts cooperatively with excisionase during excision. This indicates that amino-terminal domain of Int plays an important role in formation of proper higher-order nucleoprotein structure required for lambda site-specific recombination.

  • PDF

Development of a Simple Cell Lysis Method for Recombinant DNA Using Bacteriophage Lambda Lysis Genes

  • Jang, Bo-Yun;Jung, Yun-A;Lim, Dong-Bin
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.593-596
    • /
    • 2007
  • In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification.

Preincubation without attB DNA inhibits In Vitro Integrative Recombination of P 1 Mutant attP DNA of Bacteriophage Lambda

  • Yoo, Seung-Ku
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.132-137
    • /
    • 1995
  • The lambda integrase (lnt) is believed to bind to several arm and core sites of attP DNA in order to facilitate intasome formation. We have done systematic mutagenic analysis on all 5 arm sites and found that P1 is absolutely required for integration while P2 is not. We also found that all 3 P' arm sites(P'1, P'2, and P'3) are required for efficient integrative recombination. P'1, which is an important binding site for excision, also seems to be crucial for integration when preincubation of attP DNA with Int and IHF is performed before recombination. Preincubation assay revealed that preincubation with Int and IHF improved the efficiency of recombination of wild type attP DNA and demolished recombinations of P'1 mutant attP DNAs.

  • PDF

Temperature Effect on the Productivity of Recombinant Protein in a Lysis and DNA packaging-deficient and Temperature-sensitive Bacteriophage $\lambda$System (용균과 DNA 패키징 유전자가 결핍된 온도 민감성 박테리오 파아지 람다 시스템에서 재조합 단백질 생산성에 미치는 온도의 영향)

  • Oh, Jeong-Seok;Park, Tai-Hyun
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.112-115
    • /
    • 2005
  • E. coli in combination with bacteriophage $\lambda$ was used to overcome the intrinsic plasmid instability that is frequently found in recombinant fermentation especially in long-term operation. In order to enhance the stability and productivity, the bacteriophage ${\lambda}NM1070$ was used in this study. It is a $\lambda$ mutant, which is deficient in the synthesis of protein related to DNA packaging and cell lysis. The ${\lambda}NM1070$ is also a temperature-sensitive mutant. To optimize the production of recombinant protein in this temperature-sensitive system, the temperature effects on growth and cloned gene expression were investigated for stable and efficient recombinant gene expression. The induction to the lytic state was not complete at $36^{\circ}C$ while the temperature above $40^{\circ}C$ induced the lytic state completely. However, the productivity was decreased at $42^{\circ}C$ by temperature inhibition. The L-free cell concentration increased with the increase of temperature until $40^{\circ}C$. In conclusion, ${\lambda}NM1070$ has the optimal temperature at $38^{\circ}C$ for stability and at $40^{\circ}C$ for expression.

Binary Segmentation Procedure for Detecting Change Points in a DNA Sequence

  • Yang Tae Young;Kim Jeongjin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.139-147
    • /
    • 2005
  • It is interesting to locate homogeneous segments within a DNA sequence. Suppose that the DNA sequence has segments within which the observations follow the same residue frequency distribution, and between which observations have different distributions. In this setting, change points correspond to the end points of these segments. This article explores the use of a binary segmentation procedure in detecting the change points in the DNA sequence. The change points are determined using a sequence of nested hypothesis tests of whether a change point exists. At each test, we compare no change-point model with a single change-point model by using the Bayesian information criterion. Thus, the method circumvents the computational complexity one would normally face in problems with an unknown number of change points. We illustrate the procedure by analyzing the genome of the bacteriophage lambda.

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.