• Title/Summary/Keyword: bactericidal treatment

Search Result 157, Processing Time 0.04 seconds

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

  • Choi, Jeahyuk;Baek, Kwang-Hyun;Moon, Eunpyo
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2014
  • Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.

Bactericidal Efficacies of an Aquatic Disinfectant Tablet Composed to Calcium Hypochlorite Against Vibrio anguillarum and Streptococcus iniae

  • Cha, Chun-Nam;Lee, Yeo-Eun;Kang, In-Jin;Yoo, Chang-Yeul;Choi, Hyun-Ju;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.290-294
    • /
    • 2012
  • Vibrio spp. and Streptococcus spp. have caused a considerable disease of farmed fish and economic loss in fish farming and seafood industry. In this study, the efficacy of an aquatic disinfectant tablet composed to calcium hypochlorite was evaluated against V. anguillarum and S. iniae. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. An aquatic disinfectant tablet and test bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OM) according to treatment condition. V. anguillarum on the DW, HW and OM condition was completely inactivated with 16,000 15,000 and 13,000 fold dilutions of the disinfectant, respectively. On the DW, HW and OM condition, S. iniae was absolutely inactivated with 17,000 16,000 and 14,000 fold dilutions of the disinfectant, respectively. As an aquatic disinfectant tablet possesses bactericidal efficacy against fish pathogenic bacteria such as V. anguillarum and S. iniae this disinfectant solution can be used to control the spread of fish infective bacterial diseases.

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold

  • Doty, Heather A.;Courtney, Harry S.;Jennings, Jessica A.;Haggard, Warren O.;Bumgardner, Joel D.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.159-172
    • /
    • 2015
  • Treatment of polymicrobial infected musculoskeletal defects continues to be a challenge in orthopaedics. This research investigated single and dual-delivery of two antibiotics, vancomycin and amikacin, targeting different classes of microorganism from a biodegradable calcium sulfate-chitosan-nHA microsphere composite scaffold. The addition of chitosan-nHA was included to provide additional structure for cellular attachment and as a secondary drug-loading device. All scaffolds exhibited an initial burst of antibiotics, but groups containing chitosan reduced the burst for amikacin at 1hr by 50%, and vancomycin by 14-25% over the first 2 days. Extended elution was present in groups containing chitosan; amikacin was above MIC ($2-4{\mu}g/mL$, Pseudomonas aeruginosa) for 7-42 days and vancomycin was above MIC ($0.5-1{\mu}g/mL$ Staphylococcus aureus) for 42 days. The antibiotic activity of the eluates was tested against S. aureus and P. aeruginosa. The elution from the dual-loaded scaffold was most effective against S. aureus (bacteriostatic 34 days and bactericidal 27 days), compared to vancomycin-loaded scaffolds (bacteriostatic and bactericidal 14 days). The dual- and amikacin-loaded scaffolds were effective against P. aeruginosa, but eluates exhibited very short antibacterial properties; only 24 hours bacteriostatic and 1-5 hours bactericidal activity. For all groups, vancomycin recovery was near 100% whereas the amikacin recovery was 41%. In conclusion, in the presence of chitosan-nHA microspheres, the dual-antibiotic loaded scaffold was able to sustain an extended vancomycin elution longer than individually loaded scaffolds. The composite scaffold shows promise as a dual-drug delivery system for infected orthopaedic wounds and overcomes some deficits of other dual-delivery systems by extending the antibiotic release.

Characterization of the Bacteriocin from Enterococcus faecium CJNU 2008 (Enterococcus faecium CJNU 2008 균주 생산 박테리오신의 특성 규명)

  • Seo, Souk-Jin;Yang, Jung-Mo;Moon, Gi-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.516-520
    • /
    • 2018
  • Bacteriocin is a proteinaceous compound produced by microorganisms showing antimicrobial activities. In this study, the physicochemical properties of the bacteriocin produced by Enterococcus faecium CJNU 2008 strain were characterized. Partially purified bacteriocin showed stabilities against heat treatments at $100^{\circ}C$ for 30 min and $121^{\circ}C$ for 15 min and against solvents treatments such as methanol, ethanol, acetone, acetonitrile and chloroform. The bacteriocin also exhibited stabilities against lipase and ${\alpha}-amylase$ treatments but the stability was abolished at protease treatment, indicating that the antimicrobial agent from E. faecium CJNU 2008 was a proteinaceous bacteriocin. The bacteriocin also showed bactericidal mode of action against Listeria monocytogenes. The molecular mass of the bacteriocin was estimated to be under 6.5 kDa by a tricine-SDS-PAGE analysis. The bacteriocin was purified by HPLC. Further studies toward biochemical analysis of the bacteriocin are needed in near future.

The Efficacy of Ozonated Water Therapy on Pododermatitis of Dairy Cows (젖소 족피부염(足皮膚炎)에 대한 오존수의 치료(治療) 효과(效果))

  • Lee, Soo-Jin;Cho, Sung-Whan;Jun, Moo-Hyung;Kim, Duck-Hwan;Park, Chang-Sik;Han, Hong-Ryul;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.23 no.3
    • /
    • pp.272-278
    • /
    • 2006
  • This study was carried out to determine therapeutic the effect of ozonated water therapy on bovine pododermatitis. In addition, bactericidal effect of ozonated water on etiological agent of bovine pododermatitis was examined. The pathohistological examination for the pododermatitis, according to application with ozonated water and ozone ointment was investigated. Thirty healthy cattle were divided two groups(each of 15) : control group(povidone group), treatment group(ozone solution group). Various parameters were evaluated in terms of the lameness score, swelling score, lesion score, WBC count, neutrophil count, pathohistological finding, and antimicrobial action. The decrease of lameness and lesion score were shown in hoof lesions on 14 days after application of ozonated water. Significant decrease of swelling was shown in hoof lesions on 14 days 1Corresponding author after application of ozonated water(p<0.01). In hematological findings, WBC count revealed values within normal range. The number of neutrophils was slightly higher than that of normal, however, this was improved on 14 days after application of ozonated water. In pathohistological findings, recovery was rapid macroscopically and microscopically in the treatment with ozonated water on the hoof lesions and ozonated water was effective. In antimicobial action, bactericidal effect was observed in treatment with ozonated water on the hoof lesions and ozonated water was effective.

Synergistic Effect of Methanol Extract of Salvia Miltiorrhiza and Antibiotics against Dental Caries Pathogens (치아우식증유발세균에 대한 단삼 메탄올추출물과 항생제와의 병용효과)

  • Jang, Keoun-Ae;Kim, Hye-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.289-294
    • /
    • 2010
  • Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a traditional Korean medicine that is commonly used for the treatment of inflammatory diseases such as edema, arthritis, and hepatitis. The present study investigated the antimicrobial activity of methanol (MeOH) extract of S. miltiorrhiza roots against oral bacteria using broth the microdilution method and the checkerboard and time-kill methods evaluated the synergistic effects of treatment with antibiotics. The MeOH extract was demonstrated as a higher antibacterial activity (MICs, 8 to $64\;{\mu}g/mL$; MBCs, 16 to $64\;{\mu}g/mL$) against all tested oral bacteria. Additionally, the extract was observed to have a synergistic effect with ampicillin or gentamicin. A time-kill study evaluating the effects of the extract indicated that the extract treatment in combination with ampicillin or gentamicin showed rapid bactericidal activity. The results suggest that MeOH extract of S. miltiorrhiza could be employed as a natural antibacterial agent against dental caries.

Assessing the phytotoxicity of cetrimonium bromide in plants using eco-physiological parameters

  • Song, Uhram;Kim, Han Eol
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.120-124
    • /
    • 2016
  • Background: Although cetrimonium bromide is widely used for its bactericidal effects, the safety of cetrimonium bromide remains controversial. Therefore, the phytotoxicity of cetrimonium bromide was tested to evaluate its acute toxicity to plants and possible toxicity to other organisms and the ecosystem. Results: The germination rates of two test species, Lactuca sativa and Brassica campestris, were significantly decreased after cetrimonium bromide treatment. Furthermore, cetrimonium bromide treatment at over 1 mg/L concentration significantly affected root elongation immediately after germination. In pot experiments with semi-mature plants, significantly decreased shoot elongation and chlorophyll content were detected in both species following cetrimonium bromide treatment. Cetrimonium bromide treatment also significantly increased the antioxidant enzyme activities of plants. Conclusion: Our results show that cetrimonium bromide is phytotoxic, and since phytotoxicity testing can imply potential toxicity in the environment, further studies of the environmental toxicity of cetrimonium bromide should be performed.

Performance Analysis and Prior-Treatment of Heat Pump System with Low-Temperature Water Heat Source (저온수열원이용 열펌프시스템의 전처리 및 성능분석)

  • Park, Seong-Ryong;Chang, Ki-Chang;Lee, Sang-Nam;Ra, Ho-Sang;Park, Jun-Tack
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.258-263
    • /
    • 2000
  • River water is higher in temperature than the surrounding environment during the winter. It is highly suitable a heat source for heat pump system. Despite its suitability, however, it is not widely used, due to its fouling and corrosive nature in heat exchanger tubes of evaporator. It is designed prior-treatment system which come into direct contact with the river water, such as auto-seamer, ozone generator for bactericidal test and auto-cleaning system. And it is analyzed treatment effects for its operation. It is designed two-stage compression heat pump system using R-134a with heating load 35.16kW, ad analyzed its performance. As a result it is obtained 3.08 COP when mid-point pressure is 1,200kPa, and bypass ratio of flowing refreigerant to high-stage compressor is 25.1%

  • PDF

Characterization and Photonic Effect of Novel Ag-CNT/TiO2 Composites and their Bactericidal Activities

  • Zhang, Feng-Jun;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1981-1987
    • /
    • 2010
  • A novel composite (Ag-CNT/$TiO_2$) of silver treated carbon nanotubes (Ag-CNT) and $TiO_2$ was synthesized via wet chemistry followed by a heat treatment. The dispersion and structure of the silver in the synthesized composites determined by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy(TEM). XRD patterns of the composites showed that the composites contained a mixing anatase and rutile phase. The EDX spectra showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the CNT network, and silver particles were virtually fixed on the surface of the tube. The photocatalysis degraded behaviors of the Ag-CNT/$TiO_2$ composites of the methylene blue, which increased with an increase of the silver component. The Ag-CNT/$TiO_2$ composites have excellent antibacterial activities against Escherichia coli (E. Coli), Pseudomonas aeruginosa (P. Aeru) and Bacillus subtilis (B. Sub) under visible light.