• 제목/요약/키워드: bacterial transformation

검색결과 84건 처리시간 0.035초

호접란의 Agrobacterium 이용 형질전환 시스템의 최적조건 구명을 위한 연구 (Approaches on Optimum Conditions for Agrobacterium-Mediated Transformation of Phalaenopsis)

  • 나애실;빈철구;정병룡
    • 화훼연구
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2010
  • 호접란의 형질전환시스템을 확립하기 위한 제 연구를 수행하였다. 항생제 kanamycin, hygromycin 및 spectinomycin 농도(0, 25, 50, 100, 200, and $400mg{\cdot}L^{-1}$)가 품종별 PLB 생존율에 미치는 영향을 알아보기 위한 실험에서 hygromycin은 $25mg{\cdot}L^{-1}$에서 모든 품종이 괴사하였으므로 형질전환 개체의 선발 항생제로는 hygromycin이 유리할 것으로 보였다. P. 'Maki Watanabe'와 P. 'Brother Lawrence' 두 품종에서 형질전환체 선발을 위한 DL-Phosphinothricin (PPT)의 적정 농도는 $0.5mg{\cdot}L^{-1}$이었다. 형질전환시 가장 높은 효율을 얻기 위한 공동배양 일수를 결정하기 위한 실험은 Dtps. 'City Girl'과 A. tumefaciens LBA4404를 이용하여 2단계로 이루어졌다. 균주와 VW 배지의 1 : 10 현탁액에 균주와 PLB를 감염시킨 결과 1시간 처리구에서 PLB 생존이 가장 많았다. 그런 다음 공동배양한 결과 5일 배양에서 PLB 생존수가 가장 많았지만, 4일 이상의 공동배양할 경우 PLB 조직이 연화가 되고 약해져서 죽게 되었다. 따라서 오히려 3일 공동배양 기간이 적당한 것으로 판단되었다. 박테리아 균주의 종류가 호접란 PLB의 형질전환에 미치는 효율을 비교하기 위해 A. tumefaciens LBA4404(pTOK233)와 EHA105(pGA643)를 이용하였다. LBA4404 보다 EHA105로 감염시킨 PLB의 생존율이 더 높았다. A. tumefaciens LBA4404(pTOK233)와 AGL1(pCAMBIA3301)을 이용한 형질전환 실험에서 치상된 PLB가 초기에 백변하는 정도가 LBA4404를 이용한 경우 눈에 띄게 빠르게 나타났고 새로운 PLB가 유도되는 정도도 매우 낮았다(1% 미만). 반면에 AGL1을 이용한 경우 40% 정도의 새로운 PLB 및 유식물체 형성율을 나타내었다. 형질전환 실험에서 최종적으로 hygromycin 저항성 식물체 11개체와 PPT 저항성 식물체 32개체를 얻어냈으나 진정한 형질전환체인지는 차후에 더 검정이 되어야 할 것으로 보인다.

Multiplication and Transformation of Medicinal Plants for Production of Useful Secondary Metabolites II. Establishment of Hairy Root Cultures of Centella asiatica

  • Paek, Yun-Woong;Hwang, Sung-Jin;Park, Don-Hee;Hwang, Baik
    • Journal of Plant Biology
    • /
    • 제39권3호
    • /
    • pp.161-166
    • /
    • 1996
  • The hairy root cultures of Centella asiatica were established by infection leaf explants with Agrobacterium rhizogenes A4, 15834 in 1/2 Murashing and skoog liquid medium supplemented with 50 $\mu$M acetosyringone. The induced hairy roots were subjected to paper electrophoresis for the detection of opine and opine-positive clones which were considered to have been transformed. Five hairy root clones were selected according to the different bacterial strains used, growth rate and pattern. Among media tested, MS basal medium substituted phosphate concentration by 2.5mM K2HPO4 showed the highest growth rate in the dark condition.

  • PDF

LTP계 결정화유리의 Ag이온교환에 따른 항균특성 (The Anti-Bacterial Properties of LTP Crystallized Glass by Ag Ion Exchange)

  • 권면주;윤영진;강원호
    • 한국산학기술학회논문지
    • /
    • 제3권3호
    • /
    • pp.183-188
    • /
    • 2002
  • Antibacterial glass ceramics composed of $5Li_2O{\cdot}36CaO{\cdot}20TiO_2{\cdot}27P_2O_5$ were Prepared. After ion exchange in the $AgNO_3$solution, crystallization phases were $AgTi_2(PO_4)_3$, $LiTi_2(PO_4)_3$ and $Ca_3(PO_4)_2$. In case of ion exchange, the crystallization phases started to be transformed from $LiTi_2(PO_4)_3$ to $AgTi_2(PO_4)_3$in 0.5 mole $AgNO_3$ solution and the transformation was almost completed in 1.0 mole. ion exchange rate of glass-ceramics powder, considering ion exchange time, was more fast than that of bulk. The bacteriostatic effect of the glass-ceramics on Staphyloroccus aureus and Salmonella typhi bacteria was more excellent than that of glass when the crystallization phase was transformed from LTP to AgTP.

  • PDF

Agrobacterium으로 형질전환시킨 갈퀴꼭두선이의 세포배양에 의한 천연염료생산 (Production of Anthraquinone Derivatives by Rubia cordifolia var. pratensis Transformed by Agrobacterium spp)

  • 신순희;김유선;김승혜
    • 생약학회지
    • /
    • 제23권3호
    • /
    • pp.137-141
    • /
    • 1992
  • The cells of Rubia cordifolia var. pratensis were transformed by Agrobactrium tumefaciens strain 11157. Surface-sterilized young leaves and stems of the plants were cocultivated with bacterial suspensions. Crown galls induced from stems were cultured with variation of culturing conditions and compared with untransformed cells. The growth rates and production of anthraquinone pigments of cells were remarkably improved by transformation. Furthermore, hairy roots were induced by inoculation or cocultivation with Agrobacterium rhizogenes strains.

  • PDF

유전자의 일시발현 분석용 숙주개발을 위한 카사블랑카백합(Lilium cv. Casablanca) 화분립의 이용 (Utilization of Pollen Grain from Liluim cv. Casablanca as a Transient Gene Expression Host)

  • 박희성
    • Applied Biological Chemistry
    • /
    • 제47권4호
    • /
    • pp.430-433
    • /
    • 2004
  • Lilium cv. Casablanca pollen grains stored at $-70^{\circ}C$ were grown in pollen germination medium with Agrobacterium tumefaciens LBA4404 cells harboring pBI121 for 18 hr at $27^{\circ}C$. Following this, cefotaxime (250 mg/L) was treated for 6 hr to eradicate the bacterial cells. Histochemical GUS analysis revealed that the transgenic pollen displayed deep blue color mostly from 12 hr after the co-cultivation. Presence of $200\;{\mu}M$ acetosyringone was determined not to be more effective for GUS transformation than its absence. GUS DNA integration in the transgenic pollen genomic DNA was clearly demonstrated by Southern blot analysis.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

생지화학적 스멕타이트-일라이트 반응에 관한 고찰 (Review of Microbially Mediated Smectite-illite Reaction)

  • 김진욱
    • 자원환경지질
    • /
    • 제42권5호
    • /
    • pp.395-401
    • /
    • 2009
  • 스멕타이트-일라이트 (SI)의 전이 반응은 쇄설성 퇴적암 지역에 흔히 볼 수 있는 광물 반응이다. 지난 40여년 동안 SI 전이 반응의 중요성에 대한 논문들이 많이 출간되었는데 이는 스멕타이트가 일라이트로 변하는 정도 즉 "illitization" 이 석유의 개발, 퇴적물의 화학적 변화 및 물리적 성질변화 에 많은 연계성이 있기 때문이다. 기존의 S-I 상전이에 대한 메커니즘 연구에서는 layer-by-layer reaction 에 의한 solid state 반응 혹은 dissolution/precipitation 반응으로 집약되지만 박테리아 반응의 역할을 전혀 고려하지 않았다. 무산소 환경에서 박테리아와 점토광물의 반응에 대한 연구, 특히 스멕타이트와 철 환원 박테리아의 반응 작용에 대한 연구에서는 철 환원 박테리아가 스멕타이트 구조 속에 있는 철을 환원시켜 에너지를 얻는다고 밝혀졌다. 최근 발표된 논문들은 미생물의 철 환원 작용에 의하여 S-I 상전이가 일어날 수 있다고 보고되었는데, 이는 기존의 상전이에 대한 개념에 즉 고온, 고압, 오랜 시간이 S-I 전이의 필수 조건이라는 일반적인 해석에 반하는 것으로 새로운 연구 분야의 가능성을 시사하고 있다. 현재까지 발표된 논문에 의하면 박테리아가 S-I 반응을 촉진지킴으로 고온, 고압, 혹은 상당시간의 속성작용이 전제조건으로 작용하지 않을 수 있다는 가능성을 시사한다. 하지만 박테리아가 철을 환원함과 동시에 스멕타이트를 일라이트로 전이시킴에 있어서의 메커니즘에 대한 이해는 아직 미비하다. 따라서 이 논문에서는 현재까지 밝혀진 SI 반응을 살펴보고, 미생물 광물간의 반응작용에 있어서 연구 방법을 소개함을 목적으로 한다.

Selection and Classification of Bacterial Strains Using Standardization and Cluster Analysis

  • Lee, Sang Moo;Kim, Kyoung Hoon;Kim, Eun Joong
    • Journal of Animal Science and Technology
    • /
    • 제54권6호
    • /
    • pp.463-469
    • /
    • 2012
  • This study utilized a standardization and cluster analysis technique for the selection and classification of beneficial bacteria. A set of synthetic data consisting of 100 individual variables with three characteristics was created for analysis. The three characteristics assigned to each independent variable were designated to have different numeric scales, averages, and standard deviations. The variables were bacterial isolates at random, and the three characteristics were fermentation products, including cell yield, antioxidant activity of culture, and enzyme production. A standardization method utilizing a standard normal distribution equation to record fermentation yields of each isolate was employed to weight their different numeric scales and deviations. Following transformation, the data set was analyzed by cluster analysis. The Manhattan method for dissimilarity matrix construction along with complete linkage technique, an agglomerative method for hierarchical cluster analysis, was employed using statistical computing program R. A total of 100 isolates were classified into groups A, B, and C. In a comparison of the characteristics of each group, all characteristics in groups A and C were higher than those of group B. Isolates displaying higher cell yield were classified as group A, whereas those isolates showing high antioxidant activity and enzyme production were assigned to group C. The results of the cluster analysis can be useful for the classification of numerous isolates and the preparation of an isolation pool using numerical or statistical tools. The present study suggests that a simple technique can be applied to screen and select beneficial microbes using the freely downloadable statistical computing program R.

Transgenic Tobacco Plants Expressing the Bacterial Levansucrase Gene Show Enhanced Tolerance to Osmotic Stress

  • Park, Jeong-Mee;Kwon, Suk-Yoon;Song, Ki-Bang;Kwak, Ju-Won;Lee, Suk-Bae;Nam, Young-Woo;Shin, Jeong-Sheop;Park, Young-In;Rhee, Sang-Ki;Paek, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권2호
    • /
    • pp.213-218
    • /
    • 1999
  • Fructans are polyfructose molecules that function as nonstructural storage carbohydrates in several plants. In addition, it has been suggested that, due to their solubility, they can play an important role in helping plants survive periods of osmotic stress. In order to study the effect of levan synthesis on plant growth, the coding region of the levansucrase gene, which was isolated from Zymomonas mobilis, was introduced into tobacco plants using Agrobacterium tumefaciens-mediated transformation. The presence of the levansucrase gene in transgenic plants was verified by genomic DNA gel blot analysis. RNA gel blot and immunoblot analyses showed an accumulation of the corresponding transcript and protein product of the bacterial levansucrase gene in transgenic plants. Furthermore, a thin layer chromatography analysis revealed that fructans were synthesized and deposited in transgenic tobacco plants. When $T_1$ seeds were germinated and grown under polyethylene glycol-mediated drought stress or cold stress, the transgenic seedlings displayed a substantially higher level of growth than that of untransformed plants. These results suggest that fructans may playa significant role in the tolerance of plants under osmotic stress.

  • PDF

팔당호에서 종속영양 활성도의 계절적 변화 및 세균의 세포외 효소활성 (Seasonal Fluctuations of Heterotrophic Activity and Bacterial Extracellular Enzyme Activity in Paldang Lake)

  • 김상진
    • 미생물학회지
    • /
    • 제31권1호
    • /
    • pp.93-98
    • /
    • 1993
  • 수계생태계에서 유기물질의 순환을 이해하기 위하여 팔당호에서 종속영양 활성도와 세균세포의 효소활성의 계절절 변화를 연구하였다. 팔당호 I 의 glucose 전환시간은 수층, 퇴적토에서 2-1,300 시간, 17-170 시간, protein hydrolysate 는 5-900 시간, 15-240 시간, acetic acid 는 4-350 시간, 15-230 시간으로 계절적인 변화를 나타냈다. Glucose, protein hydrolysate, acetate 각각의 호흡율은 수층에서 23-32%, 38-41%, 22-28%로 나타났고 퇴적토에서는 34%, 61% and 41% 로 나타났다. 이 결과로 3가지 유기물질 종류 모두가 수층보다 퇴적토에서는 높은 율로 호흡됨을 알 수 있었다. 한편 세균의 $\alpha$-glucosidase, $\beta$-glucosidase, N-acetyl-$\beta$-D-glucosaminidase, aminopeptidase 활성력을 살펴본 결과 수층에서는 효소 각각에 대해 32-44%, 31-32%, 18-34% 61-67% 의 범위를 나타내었고 퇴적토에서는 34%, 40%, 23% 65%로 나타났다.

  • PDF